Bài 4 trang 169 SGK Đại số và Giải tích 11

Tìm đạo hàm của các hàm số sau:

Đề bài

Tìm đạo hàm của các hàm số sau:

\(\begin{array}{l}
a)\,\,y = \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)\\
b)\,\,y = \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)\\
c)\,\,y = \left( {x - 2} \right)\sqrt {{x^2} + 1} \\
d)\,y = {\tan ^2}x - {\cot}{x^2}\\
e)\,\,y = \cos \dfrac{x}{{1 + x}}
\end{array}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng các quy tắc tính đạo hàm của tích, thương, quy tắc tính đạo hàm hàm số hợp và bảng đạo hàm cơ bản.

Lời giải chi tiết

\(\begin{array}{l}
a)\,\,y = \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)\\y' = \left( {9 - 2x} \right)'\left( {2{x^3} - 9{x^2} + 1} \right) \\+ \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)'\\
= - 2\left( {2{x^3} - 9{x^2} + 1} \right) + \left( {9 - 2x} \right)\left( {6{x^2} - 18x} \right)\\
= - 4{x^3} + 18{x^2} - 2 + 54{x^2} - 162x - 12{x^3} + 36{x^2}\\
= - 16{x^3} + 108{x^2} - 162x - 2\\
b)\,\,y = \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)\\y' = \left( {6\sqrt x  - \dfrac{1}{{{x^2}}}} \right)'\left( {7x - 3} \right) + \left( {6\sqrt x  - \dfrac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)'\\
 = \left( {6.\dfrac{1}{{2\sqrt x }} - \dfrac{{ - \left( {{x^2}} \right)'}}{{{{\left( {{x^2}} \right)}^2}}}} \right)\left( {7x - 3} \right) + \left( {6\sqrt x  - \dfrac{1}{{{x^2}}}} \right).7\\ = \left( {\dfrac{3}{{\sqrt x }} + \dfrac{{2x}}{{{x^4}}}} \right)\left( {7x - 3} \right) + 7\left( {6\sqrt x  - \dfrac{1}{{{x^2}}}} \right)\\= \left( {\dfrac{3}{{\sqrt x }} + \dfrac{2}{{{x^3}}}} \right)\left( {7x - 3} \right) + 7\left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\\
= 21\sqrt x - \dfrac{9}{{\sqrt x }} + \dfrac{{14}}{{{x^2}}} - \dfrac{6}{{{x^3}}} + 42\sqrt x - \dfrac{7}{{{x^2}}}\\
= \dfrac{{ - 6}}{{{x^3}}} + \dfrac{7}{{{x^2}}} + 63\sqrt x - \dfrac{9}{{\sqrt x }}\\
c)\,\,y = \left( {x - 2} \right)\sqrt {{x^2} + 1} \\y' = \left( {x - 2} \right)'\sqrt {{x^2} + 1}  + \left( {x - 2} \right)\left( {\sqrt {{x^2} + 1} } \right)'\\ = 1.\sqrt {{x^2} + 1}  + \left( {x - 2} \right).\dfrac{{\left( {{x^2} + 1} \right)'}}{{2\sqrt {{x^2} + 1} }} \\= \sqrt {{x^2} + 1}  + \left( {x - 2} \right).\dfrac{{2x}}{{2\sqrt {{x^2} + 1} }}\\
 = \sqrt {{x^2} + 1} + \left( {x - 2} \right)\dfrac{x}{{\sqrt {{x^2} + 1} }}\\
 = \dfrac{{{x^2} + 1 + {x^2} - 2x}}{{\sqrt {{x^2} + 1} }}\\
= \dfrac{{2{x^2} - 2x + 1}}{{\sqrt {{x^2} + 1} }}\\
d)\,y = {\tan ^2}x - \cot {x^2}\\y' = \left( {{{\tan }^2}x} \right)' - \left( {\cot {x^2}} \right)'\\ = 2\tan x.\left( {\tan x} \right)'  - \left( {{x^2}} \right)'.\dfrac{{ - 1}}{{\sin ^2 {x^2}}}\\
= 2\tan x.\dfrac{1}{{{{\cos }^2}x}} + \dfrac{{2x}}{{{{\sin }^2}x^2}}\\
 = \dfrac{{2\sin x}}{{{{\cos }^3}x}} + \dfrac{{2x}}{{{{\sin }^2}x^2}}\\
e)y = \cos \dfrac{x}{{1 + x}}\\y' = \left( {\dfrac{x}{{x + 1}}} \right)'.\left( { - \sin \dfrac{x}{{x + 1}}} \right)\\ =  - \sin \left( {\dfrac{x}{{1 + x}}} \right).\dfrac{{\left( x \right)'\left( {1 + x} \right) - x.\left( {1 + x} \right)'}}{{{{\left( {1 + x} \right)}^2}}}\\
= - \sin \dfrac{x}{{1 + x}}.\left( {\dfrac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}}} \right)\\
= - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}.\sin \dfrac{x}{{1 + x}}
\end{array}\)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close