Bài 27 trang 67 SGK Toán 7 tập 2

Hãy chứng minh định lí đảo của định lí

Đề bài

Hãy chứng minh định lí đảo của định lí trên: Nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Chứng minh tam giác \(ABC\) cân tại \(A\) ta chứng minh \(\widehat B = \widehat C\) hoặc \(AB = AC.\)

Lời giải chi tiết

Ta đưa về bài toán: Cho \(∆ABC\) có hai đường trung tuyến \(BM\) và \(CN\) cắt nhau ở \(G.\) Biết \(BM=CN\), chứng minh tam giác \(ABC\) là tam giác cân.

Vì \(∆ABC\) có hai đường trung tuyến \(BM\) và \(CN\) cắt nhau ở \(G\)

\(\Rightarrow \) \(G\) là trọng tâm của tam giác \(ABC\).

\(\Rightarrow  GB = \dfrac{2}{3}BM\); \(GC = \dfrac{2}{3}CN\). 

Mà \(BM = CN\) (giả thiết) nên \(GB = GC.\)

Tam giác \(GBC\) có \(GB = GC\) nên \(∆GBC\) cân tại \(G\).

\(\Rightarrow \) \(\widehat{GCB} = \widehat{GBC}\) (Tính chất tam giác cân).

Xét \(∆BCN\) và \(∆CBM\) có: 

+) \(BC\) là cạnh chung

+) \(CN = BM\) (giả thiết)

+) \(\widehat{GCB} = \widehat{GBC}\) (chứng minh trên)

Suy ra \(∆BCN = ∆CBM\) (c.g.c)

 \(\Rightarrow \) \(\widehat{NBC} = \widehat{MCB}\) (hai góc tương ứng).

\(\Rightarrow ∆ABC\) cân tại \(A\) (tam giác có hai góc bằng nhau là tam giác cân) (điều phải chứng minh).

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close