Bài 2 trang 174 SGK Đại số và Giải tích 11

Tìm đạo hàm cấp hai của các hàm số sau:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm đạo hàm cấp hai của các hàm số sau:

LG a

y=11x

Phương pháp giải:

Sử dụng bảng đạo hàm cơ bản, các quy tắc tính đạo hàm để tính đạo hàm cấp 2 của các hàm số.

Lời giải chi tiết:

y=11xy=(1x)(1x)2=(1)(1x)2=1(1x)2y=[(1x)2](1x)4=2(1x)(1)(1x)4=2(1x)3

Quảng cáo

Lộ trình SUN 2026

LG b

y=11x

Phương pháp giải:

Sử dụng bảng đạo hàm cơ bản, các quy tắc tính đạo hàm để tính đạo hàm cấp 2 của các hàm số.

Lời giải chi tiết:

y=11xy=(1x)(1x)2=(1x)21x1x=121x1x=12(1x)3y=12.[(1x)3](1x)6=12.3(1x)2.(1x)(1x)6=3(1x).121x2(1x)6=34(1x)5

LG c

y=tanx

Phương pháp giải:

Sử dụng bảng đạo hàm cơ bản, các quy tắc tính đạo hàm để tính đạo hàm cấp 2 của các hàm số.

Lời giải chi tiết:

y=tanxy=1cos2xy=(cos2x)cos4x=2cosx(cosx)cos4x=2cosxsinxcos4x=2sinxcos3x

Cách khác:

y=tanxy=1cos2x=1+tan2xy=(1+tan2x)=2tanx(tanx)=2tanx.1cos2x=2tanxcos2x

LG d

y=cos2x

Phương pháp giải:

Sử dụng bảng đạo hàm cơ bản, các quy tắc tính đạo hàm để tính đạo hàm cấp 2 của các hàm số.

Lời giải chi tiết:

y=cos2xy=2cosx(cosx)=2cosxsinx=sin2xy=(2x)cos2x=2cos2x

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close