Bài 12 trang 103 Tài liệu dạy – học Toán 9 tập 2

Giải bài tập Cho tứ giác ABCD nội tiếp đường tròn (O). Gọi H và I theo thứ tự là hình chiếu của B trên AC,

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho HocTot.Nam.Name.Vn và nhận về những phần quà hấp dẫn

Đề bài

Cho tứ giác ABCD nội tiếp đường tròn (O). Gọi H và I theo thứ tự là hình chiếu của B trên AC, CD. Gọi M và N lần lượt là trung điểm của AD và HI. Chứng minh:

a) Hai tam giác ABD và HBI đồng dạng.

b) \(\widehat {MNB} = {90^o}\).

Phương pháp giải - Xem chi tiết

a) Chứng minh hai tam giác ABD và HBI đồng dạng theo trường hợp g-g.

b) Chứng minh tam giác BDM và tam giác BIN đồng dạng theo trường hợp c-g-c.

Lời giải chi tiết

 

a) Xét tứ giác BHIC có : \(\widehat {BHC} = \widehat {BIC} = {90^0}\) (gt) \( \Rightarrow \) 2 điểm H, I cùng nhìn B, C dưới góc 900\( \Rightarrow H;I\) thuộc đường tròn đường kính BC \( \Rightarrow BHIC\) nội tiếp đường tròn đường kính BC.

\( \Rightarrow \widehat {HIB} = \widehat {HCB}\) (hai góc nội tiếp cùng chắn cung HB).

Mà \(\widehat {HCB} = \widehat {ADB}\) (hai góc nội tiếp cùng chắn cung AB của đường tròn \(\left( O \right)\))

\( \Rightarrow \widehat {HIB} = \widehat {ADB}\).

Tương tự ta có : \(\widehat {HBI} = \widehat {HCI}\) (hai góc nội tiếp cùng chắn cung HI của đường tròn đường kính BC).

\(\widehat {HCI} = \widehat {ABD}\)(hai góc nội tiếp cùng chắn cung AD của đường tròn \(\left( O \right)\))

\( \Rightarrow \widehat {HBI} = \widehat {ABD}\)

Xét \(\Delta ABD\) và \(\Delta HBI\) có :

\(\begin{array}{l}\widehat {HIB} = \widehat {ADB}\,\,\left( {cmt} \right);\\\widehat {HBI} = \widehat {ABD}\,\,\left( {cmt} \right);\\ \Rightarrow \Delta ABD \sim \Delta HBI\,\,\left( {g.g} \right)\end{array}\)

b) Gọi K là hình chiếu của B trên AD \( \Rightarrow \widehat {BKD} = {90^0}\).

Xét tứ giác BIDK có : \(\widehat {BID} + \widehat {BKD} = {90^0} + {90^0} = {180^0} \Rightarrow \) Tứ giác BIDK là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).

\( \Rightarrow \widehat {DKI} = \widehat {DBI}\) (hai góc nội tiếp cùng chắn cung DI)  (1).

Ta có \(\Delta ABD \sim \Delta HBI\,\,\left( {cmt} \right)\)

\(\Rightarrow \dfrac{{BD}}{{BI}} = \dfrac{{AD}}{{HI}} = \dfrac{{2MD}}{{2NI}} = \dfrac{{MD}}{{NI}}\)

Xét \(\Delta BDM\) và \(\Delta BIN\) có :  

\(\begin{array}{l}\widehat {HIB} = \widehat {ADB}\,\,\left( {cmt} \right);\\\dfrac{{BD}}{{BI}} = \dfrac{{MD}}{{NI}}\,\,\left( {cmt} \right);\end{array}\)

\( \Rightarrow \Delta BDM \sim \Delta BIN\,\,\left( {c.g.c} \right) \)

\(\Rightarrow \widehat {DBM} = \widehat {IBN}\) (2 góc tương ứng)

\( \Rightarrow \widehat {DBM} + \widehat {DBN} = \widehat {IBN} + \widehat {DBN} \)

\(\Rightarrow \widehat {MBN} = \widehat {BDI}\)  (2)

Từ (1) và (2) \( \Rightarrow \widehat {DKI} = \widehat {MBN}\) hay \(\widehat {MKN} = \widehat {MBN} \) (\Rightarrow \) Tứ giác MNBK là tứ giác nội tiếp (Tứ giác có 2 đỉnh cùng nhìn 1 cạnh dưới các góc bằng nhau).

\( \Rightarrow \widehat {BKM} + \widehat {BNM} = {180^0}\) (tổng 2 góc đối của tứ giác nội tiếp)

Mà \(\widehat {BKM} = {90^0}\) (cách dựng) \( \Rightarrow \widehat {BNM} = {90^0}\) (đpcm).

 HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close