Giải bài 1 trang 80 SGK Hình học 12Viết phương trình mặt phẳng. Video hướng dẫn giải Viết phương trình mặt phẳng: LG a a) Đi qua điểm \(M(1; -2; 4)\) và nhận \(\overrightarrow{n}= (2; 3; 5)\) làm vectơ pháp tuyến. Phương pháp giải: Phương trình mặt phẳng \((P)\) đi qua \(M(x_0;\, \, y_0;\,\, z_0)\) và có VTPT \(\overrightarrow n = \left( {a;\;b;\;c} \right)\) có dạng: \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0.\) Lời giải chi tiết: Mặt phẳng \((P)\) đi qua điểm \(M(1; -2; 4)\) và nhận \(\overrightarrow{n}= (2; 3; 5)\) làm vectơ pháp tuyến có phương trình: \((P) :2(x - 1) + 3(x +2) + 5(z - 4) = 0\) \(⇔ 2x + 3y + 5z -16 = 0\). LG b b) Đi qua điểm \(A(0 ; -1 ; 2)\) và song song với giá của các vectơ \(\overrightarrow{u}(3; 2; 1)\) và \(\overrightarrow{v}(-3; 0; 1)\). Phương pháp giải: Mặt phẳng \((P)\) song song với các vecto \(\overrightarrow u ;\;\;\overrightarrow v \Rightarrow \) VTPT của \((P)\) là: \(\overrightarrow {{n_P}} = \left[ {\overrightarrow u ,\;\overrightarrow v } \right].\) Sau đó áp dụng công thức như câu a để lập phương trình mặt phẳng. Lời giải chi tiết: Gọi \((Q)\) là mặt phẳng cần lập. Theo đề bài ta có: \((Q)\) song song với \(\overrightarrow u ;\;\;\overrightarrow v.\) Khi đó ta có VTPT của \((Q)\) là: \(\overrightarrow {{n_Q}} = \left[ {\overrightarrow u ,\;\overrightarrow v } \right].\) \( \Rightarrow \overrightarrow {{n_Q}} = \left( {\left| {\begin{array}{*{20}{c}}2&1\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&3\\1&{ - 3}\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}3&2\\{ - 3}&0\end{array}} \right|} \right) \\= \left( {2;\; - 6;\;6} \right) = 2\left( {1; - 3;\;3} \right).\) Do đó ta chọn một VTPT của \((Q)\) có tọa độ \(\left( {1; - 3;\;3} \right)\) Phương trình mặt phẳng \((Q)\) có dạng: \((Q) :x - 0 - 3(y + 1) + 3(z - 2) = 0\) \( ⇔ x - 3y + 3z - 9 = 0\) LG c c) Đi qua ba điểm \(A(-3 ; 0 ; 0), B(0 ; -2 ; 0)\) và \(C(0 ; 0 ; -1)\). Phương pháp giải: Mặt phẳng \((P)\) đi qua \(3\) điểm \(A, \, \, B\) và \(C\) có VTPT: \(\overrightarrow {{n_P}} = \left[ {\overrightarrow {AB} ,\;\overrightarrow {AC} } \right].\) Khi đó áp dụng công thức như câu a để lập phương trình mặt phẳng. Lời giải chi tiết: Gọi \((R)\) là mặt phẳng qua \(A, \, B, \, C\). Khi đó \(\overrightarrow{AB}\), \(\overrightarrow{AC}\) là cặp vectơ chỉ phương của \((R)\). Ta có: \( \overrightarrow{AB} = (3;-2;0)\) và \(\overrightarrow{AC}= (3;\, 0; \, -1).\) Khi đó: \(\overrightarrow{n_R}=\left [\overrightarrow{AB},\overrightarrow{AC} \right ] \) \(= \left( \begin{vmatrix} -2 &0 \\ 0 & -1 \end{vmatrix};\begin{vmatrix} 0 & 3\\ -1& 3 \end{vmatrix}; \begin{vmatrix} 3 & -2\\ 3& 0 \end{vmatrix} \right)\\ = (2 ; 3 ; 6).\) Vậy phương trình mặt phẳng \((R)\) có dạng: \(2x + 3y + 6(z+1)=0 \) \( \Leftrightarrow 2x + 3y +6z + 6 = 0.\) Cách khác: Mp đi qua ba điểm \(A(-3 ; 0 ; 0), B(0 ; -2 ; 0)\) và \(C(0 ; 0 ; -1)\) có phương trình: \(\dfrac{x}{{ - 3}} + \dfrac{y}{{ - 2}} + \dfrac{z}{{ - 1}} = 1\) \( \Leftrightarrow 2x + 3y + 6z = - 6\) \( \Leftrightarrow 2x + 3y + 6z + 6 = 0\) HocTot.Nam.Name.Vn
|