Giải bài 5 trang 80 SGK Hình học 12Viết phương trình mặt phẳng. Video hướng dẫn giải Cho tứ diện có các đỉnh là \(A(5 ; 1 ; 3), B(1 ; 6 ; 2), C(5 ; 0 ; 4), D(4 ; 0 ; 6).\) LG a a) Hãy viết các phương trình mặt phẳng \((ACD)\) và \((BCD)\) Phương pháp giải: Mặt phẳng \((P)\) đi qua \(3\) điểm \(A, \, \, B\) và \(C\) có VTPT: \(\overrightarrow {{n_P}} = \left[ {\overrightarrow {AB} ,\;\overrightarrow {AC} } \right].\) +) Phương trình mặt phẳng \((P)\) đi qua \(M(x_0;\, \, y_0;\,\, z_0)\) và có VTPT \(\overrightarrow n = \left( {a;\;b;\;c} \right)\) có dạng: \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0.\) Lời giải chi tiết: Mặt phẳng \((ADC)\) đi qua \(A(5 ; 1 ; 3)\) và chứa giá của các vectơ \(\overrightarrow{AC}(0 ; -1 ; 1)\) và \(\overrightarrow{AD}(-1 ; -1 ; 3)\). Ta có:: \(\left [\overrightarrow{AC},\overrightarrow{AD} \right ]\) \( = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&1\\{ - 1}&3\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}0&{ - 1}\\{ - 1}&{ - 1}\end{array}} \right|} \right)\) \(= (-2 ; -1 ; -1).\) Chọn \(\overrightarrow {{n_{\left( {ACD} \right)}}} =(2;1;1)\). Phương trình \((ACD)\) có dạng: \(2(x - 5) + (y - 1) + (z - 3) = 0\) hay \(2x + y + z - 14 = 0\). Tương tự ta có :\(\overrightarrow{BC}(4 ; -6 ; 2)\), \(\overrightarrow{BD}(3 ; -6 ; 4)\) và \(\left (\begin{vmatrix} -6 & 2\\ -6 & 4 \end{vmatrix}; \begin{vmatrix} 2 &4 \\ 4& 3 \end{vmatrix};\begin{vmatrix} 4 & -6\\ 3& -6 \end{vmatrix} \right )\) \(= (-12 ; -10 ; -6)=-2(6; 5; 3).\) Chọn \(\overrightarrow{n_{(BCD)}}=(6;5;3)\) là VTPT của mặt phẳng \((BCD)\). Phương trình mặt phẳng \((BCD)\) có dạng: \(6(x - 1) + 5(y - 6) +3(z - 2) = 0\) hay \(6x + 5y + 3z - 42 = 0\). LG b b) Hãy viết phương trình mặt phẳng \((α)\) đi qua cạnh \(AB\) và song song với cạnh \(CD\). Lời giải chi tiết: Mặt phẳng \(( α )\) qua cạnh \(AB\) và song song với \(CD\) thì \(( α )\) qua \(A\) và nhận \(\overrightarrow{AB} (-4 ; 5 ; -1)\) , \(\overrightarrow{CD}(-1 ; 0 ; 2)\) làm vectơ chỉ phương. VTPT của mặt phẳng \((α): \overrightarrow{n}=\left [\overrightarrow{AB},\overrightarrow{CD} \right ] \) \(= \left( {\left| {\begin{array}{*{20}{c}}5&{ - 1}\\0&2\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 4}\\2&{ - 1}\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}{ - 4}&5\\{ - 1}&0\end{array}} \right|} \right)\) \(= (10 ; 9 ; 5).\) Phương trình mặt phẳng \(( α )\) có dạng : \(10\left( {x - 5} \right) + 9\left( {y - 1} \right) + 5\left( {z - 3} \right) = 0\) hay \(10x + 9y + 5z - 74 = 0\). HocTot.Nam.Name.Vn
|