Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều

A. Lý thuyết 1. Vị trí tương đối của hai đường thẳng

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

A. Lý thuyết

1. Vị trí tương đối của hai đường thẳng

Trong mặt phẳng tọa độ, cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) lần lượt có vectơ chỉ phương là \(\overrightarrow {{u_1}} \), \(\overrightarrow {{u_2}} \). Khi đó:

a) \({\Delta _1}\) cắt \({\Delta _2}\) khi và chỉ khi \(\overrightarrow {{u_1}} \), \(\overrightarrow {{u_2}} \) không cùng phương.

b) \({\Delta _1}\) song song với \({\Delta _2}\) khi và chỉ khi \(\overrightarrow {{u_1}} \), \(\overrightarrow {{u_2}} \) cùng phương và có một điểm thuộc một đường thẳng mà không thuộc đường thẳng còn lại.

c) \({\Delta _1}\) trùng với \({\Delta _2}\) khi và chỉ khi \(\overrightarrow {{u_1}} \), \(\overrightarrow {{u_2}} \) cùng phương và có một điểm thuộc cả hai đường thẳng đó.

Nhận xét: Cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có phương trình lần lượt là:

\({a_1}x + {b_1}y + {c_1} = 0\) và \({a_2}x + {b_2}y + {c_2} = 0\).

Xét hệ phương trình \(\left\{ \begin{array}{l}{a_1}x + {b_1}y + {c_1} = 0\\{a_2}x + {b_2}y + {c_2} = 0\end{array} \right.\) (I).

Khi đó:

a) \({\Delta _1}\) cắt \({\Delta _2}\) khi và chỉ khi hệ (I) có nghiệm duy nhất.

b) \({\Delta _1}\) // \({\Delta _2}\) khi và chỉ khi hệ (I) vô nghiệm.

c) \({\Delta _1}\) trùng \({\Delta _2}\) khi và chỉ khi hệ (I) có vô số nghiệm.

2. Góc giữa hai đường thẳng

Hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) cắt nhau tạo thành bốn góc:

- Nếu hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) không vuông góc với nhau thì góc nhọn trong bốn góc tạo thành được gọi là góc giữa hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\).

- Nếu hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) vuông góc với nhau thì ta nói góc giữa hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) bằng \({90^o}\).

Góc giữa hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) được kí hiệu là \((\widehat {{A_1},{A_2}})\) hoặc \(({A_1},{A_2})\).

Quy ước: Khi \({\Delta _1}\) song song hoặc trùng với \({\Delta _2}\), ta nói góc giữa hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) bằng \({0^o}\).

Nhận xét: Góc giữa hai đường thẳng luôn bé hơn hoặc bằng \({90^o}\), tức là \(({\Delta _1},{\Delta _2}) \le {90^o}\).

Trong mặt phẳng tọa độ, cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có vecto chỉ phương lần lượt là \(\overrightarrow {{u_1}}  = ({a_1};{b_1})\), \(\overrightarrow {{u_2}}  = ({a_2};{b_2})\). Ta có:

\(\cos ({\Delta _1},{\Delta _2}) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2} .\sqrt {{a_2}^2 + {b_2}^2} }}\).

Nhận xét:

+ \({\Delta _1} \bot {\Delta _2} \Leftrightarrow {a_1}{a_2} + {b_1}{b_2} = 0\).

+ Cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có vecto pháp tuyến lần lượt là \(\overrightarrow {{n_1}} \), \(\overrightarrow {{n_2}} \). Ta có:

\(\cos ({\Delta _1},{\Delta _2}) = \left| {\cos (\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} )} \right| = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\).

3. Khoảng cách từ một điểm đến một đường thẳng

Trong trường hợp tổng quát, ta có:

Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta \) có phương trình \(ax + by + c = 0\) \(({a^2} + {b^2} > 0)\) và điểm \({M_0}({x_0};{y_0})\). Khoảng cách từ điểm M đến đường thẳng \(\Delta \), kí hiệu là \(d(M,\Delta )\), được tính bởi công thức sau:

\(d(M,\Delta ) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).

Chú ý: Nếu \(M \in \Delta \) thì \(d(M,\Delta ) = 0\).

 

B. Bài tập

Bài 1: Xét vị trí tương đối của mỗi cặp đường thẳng sau:

a) \({\Delta _1}:2x - y + 1 = 0\) và \({\Delta _2}: - x + 2y + 2 = 0\).

b) \({\Delta _3}:x - y - 1 = 0\) và \({\Delta _4}:\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + 2t\end{array} \right.\).

Giải:

a) Đường thẳng \({\Delta _1}\) có vecto chỉ phương \(\overrightarrow {{u_1}}  = (1;2)\), đường thẳng \({\Delta _2}\) có vecto chỉ phương \(\overrightarrow {{u_2}}  = ( - 2; - 1)\).

Do \(\frac{1}{{ - 2}} \ne \frac{2}{{ - 1}}\) nên \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) không cùng phương, suy ra \({\Delta _1}\) cắt \({\Delta _2}\).

b) Đường thẳng \({\Delta _3}\), \({\Delta _4}\) lần lượt có vecto chỉ phương là \(\overrightarrow {{u_3}}  = (1;1)\) và \(\overrightarrow {{u_4}}  = (2;2)\). Suy ra \(\overrightarrow {{u_4}}  = 2\overrightarrow {{u_3}} \). Chọn t = 0, ta có điểm \(M(1;3) \in {\Delta _4}\). Do \(1 - 3 - 1 \ne 0\) nên \(M(1;3) \notin {\Delta _3}\).

Vậy \({\Delta _3}\) // \({\Delta _4}\).

Bài 2: Xét vị trí tương đối của hai đường thẳng

\({\Delta _1}:x - 2y + 1 = 0\) và \({\Delta _2}:2x - 4y + 2 = 0\).

Giải:

Tọa độ giao điểm của đường thẳng \({\Delta _1}\) và \({\Delta _2}\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}x - 2y + 1 = 0\\2x - 4y + 2 = 0\end{array} \right.\).

Hệ trên có vô số nghiệm. Như vậy, \({\Delta _1}\) và \({\Delta _2}\) có vô số điểm chung, tức hai đường thẳng trên trùng nhau.

Bài 3: Tính số đo góc giữa hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) trong mỗi trường hợp sau:

a) \({\Delta _1}:\left\{ \begin{array}{l}x =  - 1 + \sqrt 3 {t_1}\\y = 1 + {t_1}\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x =  - 1 + \sqrt 3 {t_2}\\y = 4 - {t_2}\end{array} \right.\).

b) \({\Delta _1}:3x + y - 10 = 0\) và \({\Delta _2}: - 2x + y - 7 = 0\).

Giải:

a) \({\Delta _1}\) có vecto chỉ phương \(\overrightarrow {{u_1}}  = \left( {\sqrt 3 ;1} \right)\). \({\Delta _2}\) có vecto chỉ phương \(\overrightarrow {{u_2}}  = \left( {\sqrt 3 ; - 1} \right)\).

Do đó, ta có: \(\cos ({\Delta _1},{\Delta _2}) = \frac{{\left| {\sqrt 3 .\sqrt 3  + 1.( - 1)} \right|}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {1^2}} .\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{( - 1)}^2}} }} = \frac{1}{2}\).

Vậy \(({\Delta _1},{\Delta _2}) = {60^o}\).

b) \({\Delta _1}\) có vecto pháp tuyến \(\overrightarrow {{n_1}}  = \left( {3;1} \right)\). \({\Delta _2}\) có vecto pháp tuyến \(\overrightarrow {{n_2}}  = \left( { - 2;1} \right)\).

Do đó, ta có: \(\cos ({\Delta _1},{\Delta _2}) = \left| {\cos (\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} )} \right| = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {3.( - 2) + 1.1} \right|}}{{\sqrt {{3^2} + {1^2}} .\sqrt {{{( - 2)}^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2}\).

Vậy \(({\Delta _1},{\Delta _2}) = {45^o}\).

Bài 4: Tính khoảng cách từ điểm M đến đường thẳng \(\Delta \) trong mỗi trường hợp sau:

a) M(-2;1) và \(\Delta :2x - 3y + 5 = 0\).

b) M(1;-3) và \(\Delta :\left\{ \begin{array}{l}x =  - 2 + 3t\\y = 2 - 4t\end{array} \right.\).

Giải:

a) Ta có: \(d(M,\Delta ) = \frac{{\left| {2.( - 2) - 3.1 + 5} \right|}}{{\sqrt {{2^2} + {{( - 3)}^2}} }} = \frac{2}{{\sqrt {13} }} = \frac{{2\sqrt {13} }}{{13}}\).

b) Đường thẳng \(\Delta \) đi qua điểm N(-2;2) và có vecto pháp tuyến \(\overrightarrow n  = (4;3)\).

Phương trình đường thẳng \(\Delta \) là \(4(x + 2) + 3(y - 2) = 0\). Từ đó, ta nhận được phương trình tổng quát của đường thẳng \(\Delta \) là \(4x + 3y + 2 = 0\).

Vậy \(d(M,\Delta ) = \frac{{\left| {4.1 + 3.( - 3) + 2} \right|}}{{\sqrt {{4^2} + {3^2}} }} = \frac{3}{5}\).

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close