Lý thuyết Giá trị lượng giác của góc lượng giác - SGK Toán 11 Cùng khám phá

I. Giá trị lượng giác của góc lượng giác

I. Giá trị lượng giác của góc lượng giác

1. Định nghĩa

 

- Trên đường tròn, lấy điểm M(x;y) như hình vẽ. Khi đó:

x=cosα, y=sinα.

tanα=sinαcosα=yx(x0)

cotα=cosαsinα=xy(y0)

- Các giá trị sinα, cosα, tanα, cotα được gọi là các giá trị lượng giác của góc lượng giác α.

*Chú ý:

a, Trục tung là trục sin, trục hoành là trục côsin.

b, Với αR,1sinx1,1cosx1.

sinαcosα xác định với mọi αR.

tanα xác định với các góc  απ2+kπ,kZ.

cotα xác định với các góc  αkπ,kZ.

c, Với mọi góc lượng giác α và số nguyên k, ta có:

sin(α+k2π)=sinαcos(α+k2π)=cosαtan(α+kπ)=tanαcot(α+kπ)=cotα

d, Bảng xác định dấu của các giá trị lượng giác

 

 

2. Giá trị lượng giác của một số góc lượng giác đặc biệt

 

3. Sử dụng máy tính cầm tay để tính các giá trị lượng giác của một góc

- Lần lượt ấn các phím SHIFT MENU 2 (CASIO 580VN)

Để chọn đơn vị độ: ấn phím 1 (Degree).

Để chọn đơn vị radian: ấn phím 2 (Radian).

- Ấn các phím MENU 1 để vào chế độ tính toán.

II. Quan hệ giữa các giá trị lượng giác

1. Các hệ thức cơ bản giữa các giá trị lượng giác của một góc lượng giác

sin2α+cos2α=11+tan2α=1cos2α(απ2+kπ,kZ)1+cot2α=1sin2α(αkπ,kZ)tanα.cotα=1(αkπ2,kZ)

2. Quan hệ giữa các giá trị lượng giác của các góc lượng giác có liên quan đặc biệt

  • Hai góc đối nhau αα

sin(α)=sinαcos(α)=cosαtan(α)=tanαcot(α)=cotα

  • Hai góc bù nhau (απ-α)

sin(πα)=sinαcos(πα)=cosαtan(πα)=tanαcot(πα)=cotα

  • Hai góc phụ nhau (απ2-α)

sin(π2α)=cosαcos(π2α)=sinαtan(π2α)=cotαcot(π2α)=tanα

  • Hai góc hơn kém π(απ + α)

sin(π+α)=sinαcos(π+α)=cosαtan(π+α)=tanαcot(π+α)=cotα

 

 

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close