Giải mục I trang 73, 74 SGK Toán 10 tập 2 - Cánh diều

Trong mặt phẳng toạ độ Oxy, cho đường thẳng Cho đường thẳng có phương trình tham số

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Lựa chọn câu để xem lời giải nhanh hơn

HĐ Khởi động

Lời giải chi tiết:

Để xác định tọa độ của máy bay ta phải lập phương trình quỹ đạo bay của máy bay hay chính là lập phương trình đường thẳng.

Hoạt động 1

Trong mặt phẳng toạ độ Oxy, cho đường thẳng \(\Delta \) . Vẽ vectơ \(\overrightarrow u \) (\(\overrightarrow u  \ne \overrightarrow 0 \)) có giá song song (hoặc trùng) với đường thẳng \(\Delta \).

Lời giải chi tiết:

Nhận xét

• Nếu ủ là một vectơ chỉ phương của A thì \(k\overrightarrow u \) (\(k \ne 0\))cũng là một vectơ chỉ phương của A.

• Một đường thẳng hoàn toàn được xác định khi biết một điểm và một vectơ chỉ phương của đường thẳng đó.

Hoạt động 2

Trong mặt phẳng toạ độ Oxy, cho đường thẳng \(\Delta \) đi qua điểm \({M_o}\left( {{x_o};{y_o}} \right)\) và có vectơ chỉ phương\(\overrightarrow u {\rm{ }} = \left( {a;{\rm{ }}b} \right)\) . Xét điểm M(x ; y) nằm trên \(\Delta \) (Hình 26).

a) Nhận xét về phương của hai vectơ \(\overrightarrow u {\rm{ }}\)và\(\overrightarrow {{M_o}M} \) .

b) Chứng minh có số thực t sao cho \(\overrightarrow {{M_o}M} \) = \(t\overrightarrow u {\rm{ }}\).

c) Biểu diễn toạ độ của điểm M qua toạ độ của điểm \({M_o}\) và toạ độ của vectơ chỉ phương \(\overrightarrow u {\rm{ }}\).

Lời giải chi tiết:

a) Hai vectơ \(\overrightarrow u {\rm{ }}\)và \(\overrightarrow {{M_o}M} \)cùng phương với nhau.

 

b) Xét \(M\left( {x;y} \right)\). Vì cùng phương với  nên có số thực t sao cho \(\overrightarrow {{M_o}M}  = t\overrightarrow u {\rm{ }}\)

c) Do \(\overrightarrow {{M_o}M}  = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow u  = \left( {a;b} \right)\) nên:

\(\overrightarrow {{M_o}M}  = t\overrightarrow u {\rm{ }} \Leftrightarrow \left\{ \begin{array}{l}x - {x_o} = at\\y - {y_o} = bt\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = {x_o} + at\\y = {y_o} + bt\end{array} \right.\)

Vậy tọa độ điểm M là: \(M\left( {{x_o} + at;{y_o} + bt} \right)\)

Luyện tập – vận dụng 1

Cho đường thẳng \(\Delta \)có phương trình tham số \(\left\{ \begin{array}{l}x = 1 - 2t\\y =  - 2 + t\end{array} \right.\) 

a) Chỉ ra tọa độ của hai điểm thuộc đường thẳng \(\Delta \).

b) Điểm nào trong các điểm \(C( - 1: - 1).{\rm{ }}D\left( {1:3} \right)\) thuộc đường thẳng \(\Delta \)?

Lời giải chi tiết:

a) Chọn \(t = 0;t = 1\) ta lần được được 2 điểm A và B thuộc đường thẳng \(\Delta \) là: \(A\left( {1; - 2} \right),B\left( { - 1; - 1} \right)\)

b) +) Thay tọa độ điểm C vào phương trình đường thẳng \(\Delta \) ta có: \(\left\{ \begin{array}{l}1 = 1 - 2t\\ - 1 =  - 2 + t\end{array} \right.\). Do hệ phương trình vô nghiệm nên C không thuộc đường thẳng \(\Delta \)

+) Thay tọa độ điểm D vào phương trình đường thẳng \(\Delta \) ta có: \(\left\{ \begin{array}{l}1 = 1 - 2t\\3 =  - 2 + t\end{array} \right.\). Do hệ phương trình vô nghiệm nên D không thuộc đường thẳng \(\Delta \)

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close