Giải mục 4 trang 69, 70 SGK Toán 9 tập 1 - Cánh diều

Xét phép biến đổi: (frac{5}{{sqrt 3 }} = frac{{5sqrt 3 }}{{left( {sqrt 3 } right)_{}^2}} = frac{{5sqrt 3 }}{3}). Hãy xác định mẫu thức của mỗi biểu thức sau: (frac{5}{{sqrt 3 }};frac{{5sqrt 3 }}{3}).

Lựa chọn câu để xem lời giải nhanh hơn

HĐ4

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 4 trang 69 SGK Toán 9 Cánh diều

Xét phép biến đổi: \(\frac{5}{{\sqrt 3 }} = \frac{{5\sqrt 3 }}{{\left( {\sqrt 3 } \right)_{}^2}} = \frac{{5\sqrt 3 }}{3}\). Hãy xác định mẫu thức của mỗi biểu thức sau: \(\frac{5}{{\sqrt 3 }};\frac{{5\sqrt 3 }}{3}\).

Phương pháp giải:

Dựa vào kiến thức về phân số để xác định mẫu thức của mỗi biểu thức.

Lời giải chi tiết:

+ Mẫu thức của phân số \(\frac{5}{{\sqrt 3 }}\) là \(\sqrt 3 \).

+ Mẫu thức của phân số \(\frac{{5\sqrt 3 }}{3}\) là 3.

LT4

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 4 trang 69 SGK Toán 9 Cánh diều

Trục căn thức ở mẫu: \(\frac{{x_{}^2 - 1}}{{\sqrt {x - 1} }}\) với \(x > 1\).

Phương pháp giải:

+ Tìm biểu thức có thể làm mất căn thức ở dưới mẫu;

+ Nhân cả tử và mẫu với biểu thức vừa tìm được để trục căn thức ở mẫu.

Lời giải chi tiết:

Ta có: \(\frac{{{x^2} - 1}}{{\sqrt {x - 1} }}\)\( = \frac{{\left( {{x^2} - 1} \right).\sqrt {x - 1} }}{{\sqrt {x - 1} .\sqrt {x - 1} }}\)\( = \frac{{\left( {x - 1} \right)\left( {x + 1} \right)\sqrt {x - 1} }}{{x - 1}}\)\( = \left( {x + 1} \right)\sqrt {x - 1} \).

LT5

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 5 trang 69 SGK Toán 9 Cánh diều

Trục căn thức ở mẫu: \(\frac{{x - 1}}{{\sqrt x  - 1}}\) với \(x > 1\).

Phương pháp giải:

+ Tìm biểu thức có thể làm mất căn thức ở dưới mẫu;

+ Nhân cả tử và mẫu với biểu thức vừa tìm được để trục căn thức ở mẫu.

Lời giải chi tiết:

Ta có: \(\frac{{x - 1}}{{\sqrt x  - 1}}\)\( = \frac{{\left( {x - 1} \right)\left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\)\( = \frac{{\left( {x - 1} \right)\left( {\sqrt x  + 1} \right)}}{{x - 1}}\)\( = \sqrt x  + 1\).

LT6

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 6 trang 70 SGK Toán 9 Cánh diều

Trục căn thức ở mẫu: \(\frac{1}{{\sqrt {x + 1}  - \sqrt x }}\) với \(x \ge 0\).

Phương pháp giải:

+ Tìm biểu thức có thể làm mất căn thức ở dưới mẫu;

+ Nhân cả tử và mẫu với biểu thức vừa tìm được để trục căn thức ở mẫu.

Lời giải chi tiết:

Ta có: \(\frac{1}{{\sqrt {x + 1}  - \sqrt x }}\)\( = \frac{{\sqrt {x + 1}  + \sqrt x }}{{\left( {\sqrt {x + 1}  - \sqrt x } \right)\left( {\sqrt {x + 1}  + \sqrt x } \right)}}\)\( = \frac{{\sqrt {x + 1}  + \sqrt x }}{{x + 1 - x}}\)\( = \sqrt {x + 1}  + \sqrt x \).

  • Giải bài tập 1 trang 70 SGK Toán 9 tập 1 - Cánh diều

    Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức: a. (sqrt {left( {5 - x} right)_{}^2} ) với (x ge 5); b. (sqrt {left( {x - 3} right)_{}^4} ); c. (sqrt {left( {y + 1} right)_{}^6} ) với (y < - 1).

  • Giải bài tập 2 trang 70 SGK Toán 9 tập 1 - Cánh diều

    Áp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức: a. (sqrt {25left( {a + 1} right)_{}^2} ) với (a > - 1); b. (sqrt {x_{}^2left( {x - 5} right)_{}^2} ) với (x > 5); c. (sqrt {2b} .sqrt {32b} ) với (b > 0); d. (sqrt {3c} .sqrt {27c_{}^3} ) với (c > 0).

  • Giải bài tập 3 trang 71 SGK Toán 9 tập 1 - Cánh diều

    Áp dụng quy tắc về căn thức bậc hai của một thương, hãy rút gọn biểu thức: a. (sqrt {frac{{left( {3 - a} right)_{}^2}}{9}} ) với (a > 3); b. (frac{{sqrt {75x_{}^5} }}{{sqrt {5x_{}^3} }}) với (x > 0); c. (sqrt {frac{9}{{x_{}^2 - 2x + 1}}} ) với (x > 1); d. (sqrt {frac{{x_{}^2 - 4x + 4}}{{x_{}^2 + 6x + 9}}} ) với (x ge 2).

  • Giải bài tập 4 trang 71 SGK Toán 9 tập 1 - Cánh diều

    Trục căn thức ở mẫu: a. (frac{9}{{2sqrt 3 }}); b. (frac{2}{{sqrt a }}) với (a > 0); c. (frac{7}{{3 - sqrt 2 }}); d. (frac{5}{{sqrt x + 3}}) với (x > 0;x ne 9); e. (frac{{sqrt 3 - sqrt 2 }}{{sqrt 3 + sqrt 2 }}); g. (frac{1}{{sqrt x - sqrt 3 }}) với (x > 0,x ne 3).

  • Giải bài tập 5 trang 71 SGK Toán 9 tập 1 - Cánh diều

    Rút gọn biểu thức: (frac{{sqrt a }}{{sqrt a - sqrt b }} - frac{{sqrt b }}{{sqrt a + sqrt b }} - frac{{2b}}{{a - b}}) với (a ge 0,b ge 0,a ne b).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close