Giải mục 4 trang 32 SGK Toán 8 tập 1 - Kết nối tri thức

Với hai số a, b bất kì, viết (a - b = a + left( { - b} right)) và áp dụng hằng đẳng thức bình phương của một tổng để tính ({left( {a - b} right)^2}).

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Lựa chọn câu để xem lời giải nhanh hơn

HĐ4

Video hướng dẫn giải

Với hai số a, b bất kì, viết \(a - b = a + \left( { - b} \right)\) và áp dụng hằng đẳng thức bình phương của một tổng để tính \({\left( {a - b} \right)^2}\).

Phương pháp giải:

Sử dụng hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)

Lời giải chi tiết:

\({\left( {a - b} \right)^2} = {\left[ {a + \left( { - b} \right)} \right]^2} = {a^2} + 2.a.\left( { - b} \right) + {\left( { - b} \right)^2} = {a^2} - 2.ab + {b^2}\)

Luyện tập 4

Video hướng dẫn giải

Khai triển \({\left( {3x - 2y} \right)^2}\)

Phương pháp giải:

Sử dụng hằng đẳng thức \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

Lời giải chi tiết:

\({\left( {3x - 2y} \right)^2} = {\left( {3x} \right)^2} - 2.3x.2y + {\left( {2y} \right)^2} = 9{x^2} - 12xy + 4{y^2}\)

Vận dụng

Video hướng dẫn giải

Trong trò chơi “Ai thông minh hơn học sinh lớp 8”, người dẫn chương trình yêu cầu các bạn học sinh cho biết kết quả của phép tính \({1002^2}\). Chỉ vài giây sau, Nam đã tính ra kết quả chính xác và giành được điểm. Em hãy giải thích xem Nam đã tính nhanh như thế nào.

Phương pháp giải:

Sử dụng hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)

Lời giải chi tiết:

\({1002^2} = {\left( {1000 + 2} \right)^2} = {1000^2} + 2.1000.2 + {2^2} = 1000000 + 4000 + 4 = 1004004\).

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close