Giải mục 3 trang 69, 70 SGK Toán 8 tập 2– Chân trời sáng tạo

Cho hai tam giác

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên

Lựa chọn câu để xem lời giải nhanh hơn

HĐ3

Video hướng dẫn giải

Cho hai tam giác \(ABC\) và \(A'B'C'\) có \(\widehat A = \widehat {A'},\widehat C = \widehat {C'}\) (Hình 9).

Trên cạnh \(AC\), lấy điểm \(D\) sao cho \(DC = A'C'\). Qua \(D\) là kẻ đường thẳng song song với \(AB\) cắt cạnh \(BC\) tại \(E\).

a) Tam giác \(DEC\) có đồng dạng với tam giác \(ABC\) không?

b) Nhận xét về mối quan hệ giữa tam giác \(A'B'C'\)và tam giác \(DEC\).

c) Dự đoán về sự đồng dạng của hai tam giác \(A'B'C'\)và \(ABC\).

Phương pháp giải:

- Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.

- Hai tam giác bằng nhau thì đồng dạng với nhau.

Lời giải chi tiết:

a)  Vì \(ED//AB \Rightarrow \Delta DEC\backsim\Delta ABC\) (định lí)

b) Vì \(ED//AB \Rightarrow \widehat {CDE} = \widehat {CAB}\) (hai góc đồng vị)

Mà \(\widehat {CAB} = \widehat {A'}\). Do đó, \(\widehat {CDE} = \widehat {B'A'C'}\).

Xét tam giác \(A'B'C'\) và tam giác \(DEC\) ta có:

\(\widehat {B'A'C'} = \widehat {CDE}\) (chứng minh trên)

\(A'C' = CD\) (giải thuyết)

\(\widehat {C'} = \widehat C\) (giả thuyết)

Do đó, \(\Delta A'B'C' = \Delta DEC\) (g.c.g)

c) Vì tam giác \(\Delta A'B'C'\backsim\Delta DEC\) (tính chất)

Mà \(\Delta DEC\backsim\Delta ABC\) nên \(\Delta ABC\backsim\Delta A'B'C'\).

TH3

Video hướng dẫn giải

Quan sát Hình 12.

a) Chứng minh \(\Delta ABC\backsim\Delta A'B'C'\).

b) Tính độ dài cạnh \(B'C'\).

Phương pháp giải:

- Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

- Tổng ba góc trong một tam giác có số đo bằng \(180^\circ \).

Lời giải chi tiết:

a) Xét tam giác \(A'B'C'\) ta có:

\(\widehat {A'} + \widehat {B'} + \widehat {C'} = 180^\circ \)

Thay số: \(79^\circ  + \widehat {B'} + 41^\circ  = 180^\circ \)

\( \Rightarrow \widehat {B'} = 180^\circ  - 79^\circ  - 41^\circ  = 60^\circ \)

 Xét \(\Delta ABC\) và \(\Delta A'B'C'\) ta có:

\(\widehat A = \widehat {A'} = 79^\circ \) (giả thuyết)

\(\widehat B = \widehat {B'} = 60^\circ \) (chứng minh trên)

Do đó, \(\Delta ABC\backsim\Delta A'B'C'\) (g.g)

b) Vì \(\Delta ABC\backsim\Delta A'B'C'\) nên \(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}}\) (các cạnh tương ứng có cùng tỉ lệ)

Thay số, \(\frac{4}{6} = \frac{6}{{B'C'}} \Rightarrow B'C' = \frac{{6.6}}{4} = 9\)

Vậy \(B'C' = 9\).

VD1

Video hướng dẫn giải

Cho hình thang \(ABCD\left( {AB//CD} \right)\) có \(AB = 6m,CD = 15m,OD = 8m\) (Hình 13). Tính độ dài đoạn thẳng \(OB\).

 

Phương pháp giải:

Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

Lời giải chi tiết:

Vì tứ giác \(ABCD\) là hình thang có \(AB//CD\) nên \(\widehat {BAO} = \widehat {OCD}\) (hai góc so le trong)

Xét tam giác \(ABO\) và tam giác \(CDO\) có:

\(\widehat {BAO} = \widehat {OCD}\) (chứng minh trên)

\(\widehat {AOB} = \widehat {COD}\) (hai góc đối đỉnh)

Do đó, \(\Delta ABO\backsim\Delta CDO\) (g.g)

Ta có: \(\frac{{AB}}{{CD}} = \frac{{OB}}{{OD}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Thay số, \(\frac{6}{{15}} = \frac{{OB}}{8} \Rightarrow OB = \frac{{6.8}}{{15}} = 3,2\)

Vậy \(OB = 3,2m\).

VD2

Video hướng dẫn giải

Qua các trường hợp đồng dạng của hai tam giác, hãy trả lời câu hỏi ở đầu bài (trang 67).

Phương pháp giải:

Dựa vào cách chứng minh hai tam giác bằng nhau và hai tam giác đồng dạng.

Lời giải chi tiết:

- Ở hai tam giác bằng nhau yêu cầu các cạnh tương ứng bằng nhau còn ở hai tam giác đồng dạng yêu cầu các cạnh tương ứng có cùng tỉ lê.

- Hai tam giác bằng nhau có ba trường hợp: cạnh góc cạnh, cạnh cạnh cạnh, góc cạnh góc.

- Hai tam giác đồng dạng có ba trường hợp: cạnh góc cạnh, cạnh cạnh cạnh, góc góc.

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close