Giải mục 1 trang 61, 62, 63 SGK Toán 9 tập 2 - Cánh diều

Xét phương trình (a{x^2} + bx + c = 0(a ne 0)). Giả sử phương trình đó có 2 nghiệm là ({x_1},{x_2}.) Tính ({x_1} + {x_2};{x_1}.{x_2}) theo các hệ số (a,b,c.)

Tổng hợp đề thi học kì 2 lớp 9 tất cả các môn - Cánh diều

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Lựa chọn câu để xem lời giải nhanh hơn

HĐ1

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 1 trang 61 SGK Toán 9 Cánh diều

Xét phương trình ax2+bx+c=0(a0). Giả sử phương trình đó có 2 nghiệm là x1,x2. Tính x1+x2;x1.x2 theo các hệ số a,b,c.

Phương pháp giải:

Áp dụng công thức tính nghiệm để tính 2 nghiệm sau đó tìm tổng và tích 2 nghiệm đó.

Lời giải chi tiết:

Phương trình có 2 nghiệm: x1=b2+Δ2a; x2=b2Δ2a.

x1+x2=b+Δ2a+bΔ2a=2b2a=bax1.x2=b+Δ2a.bΔ2a=b2Δ4a2=b2(b24ac)4a2=4ac4a2=ca

LT1

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 1 trang 62 SGK Toán 9 Cánh diều

Cho phương trình 4x2+9x+1=0.

a)   Chứng minh phương trình có 2 nghiệm phân biệt x1,x2.

b)  Tính x1+x2;x1.x2.

c)   Tính x12+x22.

Phương pháp giải:

a)   Chứng minh Δ>0.

b)  Áp dụng công thức tính nghiệm để tính 2 nghiệm sau đó tìm tổng và tích 2 nghiệm đó.

c)   Biến đổi x12+x22=(x1+x2)22x1.x2, sau đó thay các giá trị phù hợp ở câu b vào biểu thức vừa biến đổi.

Lời giải chi tiết:

a)   Phương trình có các hệ số: a=4;b=9;c=1

Δ=924.(4).1=97>0

Δ>0nên phương trình đã cho có 2 nghiệm phân biệt (đpcm).

b)  Áp dụng Định lý Viète, ta có:

x1+x2=ba=94=94x1.x2=ca=14=14

c)   Ta có: x12+x22=(x1+x2)22x1.x2 (1)

Thay x1+x2=94,x1.x2=14 vào (1) ta được:

x12+x22=(x1+x2)22x1.x2=(94)22.(14)=8916

LT2

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 2 trang 63 SGK Toán 9 Cánh diều

Không tính Δ, giải phương trình 4x27x+3=0.

Phương pháp giải:

Kiểm tra xem có phải trường hợp nhẩm được nghiệm hay không (a+b+c=0 hoặc ab+c=0).

Lời giải chi tiết:

Phương trình có các hệ số a=4;b=7;c=3.

Ta thấy: a+b+c=47+3=0 nên phương trình có nghiệm: x1=1,x2=34

LT3

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 3 trang 63 SGK Toán 9 Cánh diều

Không tính Δ, giải phương trình 2x29x11=0.

Phương pháp giải:

Kiểm tra xem có phải trường hợp nhẩm được nghiệm hay không (a+b+c=0 hoặc ab+c=0).

Lời giải chi tiết:

Phương trình có các hệ số a=2;b=9;c=11.

Ta thấy ab+c=2(9)11=0 nên phương trình có nghiệm là x1=1,x2=(11)2=112.

  • Giải mục 2 trang 63, 64 SGK Toán 9 tập 2 - Cánh diều

    Cho hai số có tổng bằng 5 và tích bằng 6. a) Gọi một số là x. Tính số còn lại theo x. b) Lập phương trình bậc hai ẩn x.

  • Giải bài tập 1 trang 64 SGK Toán 9 tập 2 - Cánh diều

    Nếu ({x_1},{x_2})là hai nghiệm của phương trình (a{x^2} + bx + c = 0(a ne 0)) thì: a) ({x_1} + {x_2} = - frac{b}{a};{x_1}.{x_2} = - frac{c}{a}) b) ({x_1} + {x_2} = frac{c}{a};{x_1}.{x_2} = - frac{b}{a}) c) ({x_1} + {x_2} = frac{b}{a};{x_1}.{x_2} = - frac{c}{a}) d) ({x_1} + {x_2} = - frac{b}{a};{x_1}.{x_2} = frac{c}{a})

  • Giải bài tập 2 trang 64 SGK Toán 9 tập 2 - Cánh diều

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai? a) Nếu phương trình (a{x^2} + bx + c = 0(a ne 0)) có (a + b + c = 0) thì phương trình có một nghiệm là ({x_1} = 1) và nghiệm còn lại là ({x_2} = frac{c}{a}.) b) Nếu phương trình (a{x^2} + bx + c = 0(a ne 0)) có (a - b + c = 0) thì phương trình có một nghiệm là ({x_1} = - 1) và nghiệm còn lại là ({x_2} = frac{c}{a}.) c) Nếu phương trình (a{x^2} + bx + c = 0(a ne 0)) có (a - b + c = 0) thì phương trình có

  • Giải bài tập 3 trang 64 SGK Toán 9 tập 2 - Cánh diều

    Giải thích vì sao nếu (ac < 0) thì phương trình (a{x^2} + bx + c = 0(a ne 0)) có 2 nghiệm là 2 số trái dấu nhau.

  • Giải bài tập 4 trang 64 SGK Toán 9 tập 2 - Cánh diều

    Cho phương trình (2{x^2} - 3x - 6 = 0). a) Chứng minh phương trình có 2 nghiệm phân biệt ({x_1},{x_2}.) b) Tính ({x_1} + {x_2};{x_1}.{x_2}). Chứng minh cả 2 nghiệm ({x_1},{x_2}) đều khác 0. c) Tính (frac{1}{{{x_1}}} + frac{1}{{{x_2}}}) d) Tính ({x_1}^2 + {x_2}^2) e) Tính (left| {{x_1} - {x_2}} right|.)

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến Lớp 9 & Lộ trình UP10 trên Tuyensinh247.com

>> Chi tiết khoá học xem: TẠI ĐÂY

Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

close