Giải mục 1 trang 21 Chuyên đề học tập Toán 12 - Cánh diều

Trong bài toán ở phần mở đầu, gọi \(x,y\) lần lượt là số lít nước sinh tố loại thứ nhất và loại thứ hai mà công ty dự định sản xuất. a) Viết các điều kiện ràng buộc đối với \(x,y\) để đáp ứng nhu cầu trên của công ty. b) Viết điều kiện ràng buộc đối với \(x\) và \(y\) sao cho tổng số tiền công ty thu được là nhiều nhất.

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Lựa chọn câu để xem lời giải nhanh hơn

Hoạt động

Trả lời câu hỏi Hoạt động trang 21 Chuyên đề học tập Toán 12 Cánh diều

Trong bài toán ở phần mở đầu, gọi \(x,y\) lần lượt là số lít nước sinh tố loại thứ nhất và loại thứ hai mà công ty dự định sản xuất.

a) Viết các điều kiện ràng buộc đối với \(x,y\) để đáp ứng nhu cầu trên của công ty.

b) Viết điều kiện ràng buộc đối với \(x\) và \(y\) sao cho tổng số tiền công ty thu được là nhiều nhất.

Phương pháp giải:

a) Biểu diễn số lít nước anh đào và số lít nước cam có trong \(x\) lít nước sinh tố loại thứ nhất và có trong \(y\) lít nước sinh tố loại tứ hai.

Cần lưu ý là lượng nguyên liệu sử dụng không vượt qua lượng công ty dự trữ đang có tức là lượng nước anh đào không quá 120 lít, nước cam không quá 150 lít.

b) Viết biểu thức biểu thị tổng số tiền công ty thu được khi bán  \(x\) lít nước sinh tố loại thứ nhất và \(y\) lít nước sinh tố loại tứ hai.

Ghép các điều kiện ràng buộc trong câu a vào. (lưu ý \(x,y \ge 0)\)

Lời giải chi tiết:

a) Số lít nước anh đào có trong \(x\) lít nước sinh tố loại thứ nhất và có trong \(y\) lít nước sinh tố loại tứ hai là \(0,7x + 0,4y\) (lít)

Số lít nước anh cam có trong \(x\) lít nước sinh tố loại thứ nhất và có trong \(y\) lít nước sinh tố loại tứ hai là \(0,3x + 0,6y\) (lít)

Vì công ty có 120 lít nước anh đào và 150 lít nước cam nên lượng nguyên liệu sử dụng không vượt qua mức dự trữ trên do đó ta có hệ bất phương trình \(\left\{ \begin{array}{l}0,7x + 0,3y \le 120\\0,3x + 0,6y \le 150\end{array} \right.\)

b) Tổng số tiền công ty thu được khi bán \(x\) lít nước sinh tố loại thứ nhất và \(y\) lít nước sinh tố loại tứ hai là \(T = 24x + 18y\) (nghìn đồng).

Vậy điều kiện của \(x,y\) sao cho tổng số tiền công ty thu được là nhiều nhất là \(\left\{ \begin{array}{l}\max (T = 24x + 18y)\\0,7x + 0,3y \le 120\\0,3x + 0,6y \le 150\\x \ge 0\\y \ge 0\end{array} \right.\)

  • Giải bài 1 trang 27 Chuyên đề học tập Toán 12 - Cánh diều

    Để hoàn thành hợp đồng đúng hạn, một nhà mát tổ chức cho công nhân làm việc theo hai ca, ca I từ 7h30 đến 15h30 và ca II từ 6h00 đến 22h00. Mỗi ca có số công nhân làm việc tối thiểu là 40 người và tối đa là 120 người. Số công nhân làm việc ở cả hai ca ít nhất là 100 người. Thu nhập tăng thêm cho mỗi công nhân được tính theo Bảng 2 Tính số lượng công nhân làm việc cho từng ca sao cho số tiền nhà máy trả cho thu nhập tăng thêm là ít nhất.

  • Giải bài 2 trang 27 Chuyên đề học tập Toán 12 - Cánh diều

    Nhu cầu canxi tối thiểu cho một người đang độ tuổi trưởng thành trong một ngày là 1 305 mg. Trong một 1 lạng (100g) đậu nành có 165 mg canxi, 1 lạng thịt có 15 mg canxi. Gia đình chị Thảo có bốn người đang độ tuổi trưởng thành dự định ăn mỗi ngày tối thiểu 3 lạng đậu nàng và 7 lạng thịt, những ăn không quá 4 kg cả đậu nành và thịt. Giá tiền đậu nành là 50 000 đồng/1 kg; giá tiền thịt là 85 000 đồng/1 kg. Hỏi gia đình chị Thảo cần mua bao nhiêu lạng mỗi loại đậu nành và thịt sao cho chi phí để mu

  • Giải bài 3 trang 28 Chuyên đề học tập Toán 12 - Cánh diều

    Người ta cần sơn hai loại sản phẩm A, B bằng hai loại sơn: sơn xanh, sơn vàng. Lượng sơn để sơn mỗi loại sản phẩm đó được cho ở Bảng 3 (đơn vị: kg/1 sản phẩm). Người ta dự định sử dụng không quán 12 kg sơn xanh và không quá 8 kg sơn vàng để sơn tất cả các sản phẩm của hai loại đó. Mỗi sản phẩm loại A lãi 10 triệu đồng và mỗi sản phẩm loại B lãi 8 triệu đồng. Tính khối lượng sản phẩm từng loại cần sơn sao cho số tiền lãi thu được là lớn nhất.

  • Giải bài 4 trang 28 Chuyên đề học tập Toán 12 - Cánh diều

    Một cơ sở sản xuất đồ gỗ dự định sản xuất ba loại sả phẩm là bàn, ghế và tủ. Định mức sử dụng lao động, chi phí sản suất và giá bán mỗi sản phẩm mỗi loại ước tính trong Bảng 4: Biết rằng cơ sở sản xuất đó sử dụng không quá 500 ngày công, số tiền dành cho chi phí sản xuất không quá 40 triệu đồng và số ghế gấp sáu lần số bàn. Tính số sản phẩm mỗi loại cần phải sản xuất sao cho tổng doanh thu đạt được cao nhất.

  • Giải bài 5 trang 28 Chuyên đề học tập Toán 12 - Cánh diều

    Bác Dũng đầu tư không quá 1,2 tỉ đồng vào hai loại cổ phiếu: cổ phiếu A dự kiến chi trả cổ tức bằng tiền với tỉ lệ 5%; cổ phiếu B rủi ro cao hơn dự kiến chi trả cổ tức bằng tiền với tỉ lệ 12%. Giá cổ phiếu A là 30 000 đồng/1 cổ phiếu, giá cổ phiếu B là 40 000 đồng/1 cổ phiếu. Để giảm thiểu rủi ro, bác Dũng quyết định mua số lượng cổ phiếu B không quá 10 000 cổ phiếu. Hỏi bác Dũng nên đầu tư mỗi loại bao nhiêu cổ phiếu để lợi nhuận thu được là lớn nhất.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close