-
Bài 1 trang 35
Bạn Hà có một tấm bìa hình vuông cạnh 60 cm (Hình 2). Bạn muốn làm một cái hộp đựng đồ có dạng hình hộp chữ nhật mà có thể để được vào một ngăn sách có dạng hình hộp chữ nhật, đáy là hình vuông cạnh 37 cm, chiều cao bằng 28 cm. Bạn cắt bốn góc của tấm bìa đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng (x) (cm), rồi gập lại thành một cái hộp không nắp (Hình 3). Tìm số nguyên dương (x) để làm được cái hộp đựng đồ có thể tích lớn nhất.
Xem lời giải -
Bài 2 trang 35
Hình 4 minh hoạ một màn hình (BC) có chiều cao 1,4 m được đặt thẳng đứng và mép dưới của màn hình cách mặt đất một khoảng (BA = 1,8)m. Một chiếc đèn quan sát màn hình được đặt ở vị trí (O) trên mặt đất. Hãy tính khoảng cách (AO) sao cho góc quan sát (BOC) là lớn nhất.
Xem lời giải -
Bài 3 trang 36
Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có (n) con cá sau một vụ cân nặng: (P(n) = 480 - 20n) (gam) Hỏi phải thả bao nhiêu cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất.
Xem lời giải -
Bài 4 trang 36
Một con cá hồi bơi ngược dòng để vượt một khoảng cách là 300 km. Vận tốc dòng nước là 6 km/h. Nếu vận tốc bơi của cá khi nước đứng yên là \(v\) (km/h) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức \(E(v) = c{v^3}t\) Trong đó \(c\) là một hằng số, \(E\) được tính bằng jun. Tìm vận tốc bơi của cá khi nước đứng yên để năng lượng tiêu hao là ít nhất.
Xem lời giải -
Bài 5 trang 36
Một nhà máy sản xuất xe đạp cho thị trường châu Âu theo đơn giá 120 euro (€). Chi phí mỗi ngày của nhà máy được cho bởi hàm số (K(x) = 0,02{x^3} - 3{x^2} + 172x + 2400.) trong đó (x) là số lượng xe đạp sản xuất được trong ngày hôm đó. Mỗi ngày có thể sản xuất tối đa 130 xe đạp. Giả sử số xe đạp sản xuất được trong mỗi ngày đề được bán hết vào cuối ngày đó. Gọi (G(x)) là hàm biểu diễn lợi nhuận hằng ngày của nhà máy. a) Vẽ đồ thị hàm số (G(x)) trên đoạn (left[ {0;130} right].) b
Xem lời giải -
Bài 6 trang 36
Một nhà máy sản xuất một loại sản phẩm cho thị trường Mỹ. Biết rằng: - Chi phí cho các công việc hành chính chung của nhà máy là 90 đô la Mỹ (USD)/1 ngày. - Chi phí sản xuất là 0,09 USD/1 sản phẩm. - Các loại chi phí khác trong mỗi một ngày là \(\frac{{{x^2}}}{{10000}}\) (USD), trong đó \(x\) là số sản phẩm nhà máy sản xuất được trong ngày hôm đó. a) Tính tổng chi phí \(U(x)\) của mỗi một sản phẩm. b) Tìm \(x\) sao cho \(U(x)\) nhận giá trị nhỏ nhất.
Xem lời giải -
Bài 7 trang 37
Trong một phản ứng hoá học, lượng khí \({\rm{C}}{{\rm{O}}_{\rm{2}}}\) thoát ra \(V(t)\) được tính theo thời gian \(t\) bằng công thức: \(V(t) = \frac{{0,2{k_1}}}{{{k_1} - {k_2}}}\left( {{e^{ - {k_2}t}} - {e^{ - {k_1}t}}} \right),\) Trong đó \(V(t)\) được tính theo đơn vị mililít và \(t\) được tính theo đơn vị giây; \({k_1},{k_2}\) là các hằng số sao cho \({k_1} > {k_2} > 0\). Lượng khí \({\rm{C}}{{\rm{O}}_{\rm{2}}}\) thoát ra trong phản ứng đó có giá trị lớn nhất là bao nhiêu?
Xem lời giải -
Bài 8 trang 37
Một doanh nghiệp dự định sản xuất các hộp dựng nước giải khát có dạng hình trụ với dung tích là 500 \({\rm{c}}{{\rm{m}}^{\rm{3}}}\) (Hình 5). Hãy tính bán kính đáy và chiều cao của chiếc hộp để diện tích vỏ hộp là nhỏ nhất (Hình 6).
Xem lời giải -
Bài 9 trang 37
Một lò xo được làm từ một sợi dây kim loại. Gọi (d) là đường kính (trung bình) của sợ dây kim loại và (D) là đường kính (trung bình) của lò xo (Hình 7). Ki lò xo đứng lên mặt đất thì nó nén lại bởi trọng lượng (P) của lò xo, vật chất trong dây kim loại chịu ứng suất lớn nhất (S) tại các điểm trên bè mặt sợi dây mà khoảng cách từ những điểm đó đến đường tâm của lò so là nhỏ nhất. Biết rằng (S) được cho bởi công thức: (S = frac{{8PD}}{{pi {d^3}}}left[ {frac{{frac{{4D}}{d} - 1}}{{
Xem lời giải