Giải bài tập 2 trang 79 SGK Toán 9 tập 2 - Cánh diều

Cho đường tròn (I) nội tiếp tam giác ABC và lần lượt tiếp xúc với các cạnh BC, CA, AB tại M, N, P. Chứng minh (widehat {AIN} = widehat {PMN} = frac{1}{2}widehat {PIN.})

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Cho đường tròn (I) nội tiếp tam giác ABC và lần lượt tiếp xúc với các cạnh BC, CA, AB tại M, N, P. Chứng minh \(\widehat {AIN} = \widehat {PMN} = \frac{1}{2}\widehat {PIN.}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Bước 1: Lý thuyết: Góc ở tâm bằng số đo cung bị chắn, góc nội tiếp bằng một nửa số đo cung bị chắn, suy ra \(\widehat {PMN} = \frac{1}{2}\widehat {PIN.}\)

Bước 2: Sử dụng tính chất 2 tiếp tuyến cắt nhau để suy ra \(\widehat {AIN} = \frac{1}{2}\widehat {PIN.}\)

Lời giải chi tiết

Xét (I) có:

\(\widehat {PIN}\) là góc ở tâm chắc cung NP nên \(\widehat {PIN}\)= sđ\(\overset\frown{NP}\).

\(\widehat {PMN}\) là góc nội tiếp chắc cung NP nên \(\widehat {PMN}\) = \(\frac{1}{2}\)sđ\(\overset\frown{NP}\).

Suy ra \(\widehat {PMN} = \frac{1}{2}\widehat {PIN.}\)(1)

Ta lại có: \(IN \bot AC,IP \bot AB\) nên AB, AC là 2 tiếp tuyến của (I) nên IA là tia phân giác của góc PIN, hay \(\widehat {AIN} = \frac{1}{2}\widehat {PIN.}\)(2)

Từ (1) và (2) ta có \(\widehat {AIN} = \widehat {PMN} = \frac{1}{2}\widehat {PIN.}\)

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close