Giải bài 9.45 trang 111 SGK Toán 8 tập 2 - Kết nối tri thức

Cho tam giác ABC có đường cao AH.

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho tam giác ABC có đường cao AH. Biết AH=12cm, CH=9cm, BH=16cm. Lấy M, N lần lượt là trung điểm của AH, BH

a) Chứng minh rằng ABC là tam giác vuông tại A

b) Chứng minh rằng MN ⊥ AC và CM ⊥ AN

c) Tính diện tích tam giác AMN 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng định lý Pythagore

Lời giải chi tiết

a) Xét tam giác AHB vuông tại H, có:

\(A{H^2} + H{B^2} = A{B^2}\) (định lý Pythagore)

=> \(A{B^2} = {12^2} + {16^2}\)

=> AB=20cm

Tương tự, có: \(A{C^2} = A{H^2} + C{H^2}\) (áp dụng định lý Pythagore trong tam giác vuông AHC)

=> \(A{C^2} = {12^2} + {9^2}\)

=> AC=15cm

Có BC=9+16=25

Trong tam giác ABC, nhận thấy \(A{B^2} + A{C^2} = B{C^2}\)

=> Tam giác ABC vuông tại A

b) Xét tam giác AHB có: 

M là trung điểm của AH

B là trung điểm của BH

=> MN là đường trung bình của tam giác AHB

=> MN // AB

mà AB ⊥ AC (vì tam giác ABC vuông tại A)

=> MN ⊥ AC

Xét \(\Delta ACN\) có \(AH \bot CN\) (gt), \(MN \bot AC\) (cmt), \(AH \cap MN = M\). Vậy M là trực tâm của \(\Delta ACN\), do đó \(CM \bot AN\).

c) Ta có: \({S_{\Delta AMN}} = \frac{{AM.HN}}{2} = \frac{{\frac{{AH}}{2}.\frac{{BH}}{2}}}{2} = \frac{{AH.BH}}{8} = \frac{{12.16}}{8} = 24(c{m^2})\)

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close