Giải bài 9 trang 86 sách bài tập toán 9 - Cánh diều tập 2Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính R. a) Chứng minh rằng O cũng là tâm đường tròn nội tiếp tam giác ABC. b) Vẽ tam giác IJK ngoại tiếp đường tròn (O; R) với JK // BC, IJ // AC, IK // AB. Chứng minh tam giác IJK đều. c) Gọi R’ là bán kính của đường tròn ngoại tiếp tam giác IJK và r là bán kính của đường tròn nội tiếp tam giác ABC. Tính (frac{r}{{R'}}). Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Đề bài Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính R. a) Chứng minh rằng O cũng là tâm đường tròn nội tiếp tam giác ABC. b) Vẽ tam giác IJK ngoại tiếp đường tròn (O; R) với JK // BC, IJ // AC, IK // AB. Chứng minh tam giác IJK đều. c) Gọi R’ là bán kính của đường tròn ngoại tiếp tam giác IJK và r là bán kính của đường tròn nội tiếp tam giác ABC. Tính \(\frac{r}{{R'}}\). Phương pháp giải - Xem chi tiết Trong một tam giác đều, trọng tâm của tam giác đồng thời là tâm của đường tròn nội tiếp tam giác. Chứng minh các góc của tam giác IJK bằng 60o. Tam giác đều cạnh a có bán kính đường tròn ngoại tiếp là \(R = \frac{{a\sqrt 3 }}{3}\). Lời giải chi tiết a) Gọi A’, B’, C’ lần lượt là các chân đường cao của tam giác ABC, hay AA’; BB’, CC’ lần lượt là các đường tuyến giao nhau tại điểm O. Nên O là trọng tâm tam giác ABC và đồng thời là tâm của đường tròn nội tiếp tam giác ABC. b) Do JK // BC và IK // AB nên tứ giác ABCK là hình bình hành. Mặt khác, \(\widehat {ABC} = {60^o}\). Suy ra \(\widehat {AKC} = {60^o}\) hay \(\widehat {{\rm{IJ}}K} = {60^o}\). Tương tự \(\widehat {KJI} = {60^o}\). Do đó tam giác IJK là tam giác đều. c) R’ = \(\frac{{JK\sqrt 3 }}{3} = \frac{{2AK\sqrt 3 }}{3} = \frac{{2BC\sqrt 3 }}{3}\) mà OA = \(\frac{{BC\sqrt 3 }}{3}\) nên R’ = 2 OA = 4 OA’ = 4r. vậy \(\frac{r}{{R'}} = \frac{1}{4}\).
|