Giải bài 7 trang 85 sách bài tập toán 9 - Cánh diều tập 2

Trên đường tròn (O) bán kính R, lấy các điểm A, B, C, D sao cho (sđoversetfrown{AB}={{60}^{o}}); (sđoversetfrown{BC}={{90}^{o}}); (sđoversetfrown{CD}={{120}^{o}}) (Hình 7). a) Xác định tâm và tính theo R bán kính đường tròn ngoại tiếp của các tam giác OAB, OBC, OAD, OCD. b) Gọi I là giao điểm của AC và BD. Tính bán kính đường tròn ngoại tiếp của các tam giác IAB, IBC, IAD, IDC.

Đề bài

Trên đường tròn (O) bán kính R, lấy các điểm A, B, C, D sao cho \(sđ\overset\frown{AB}={{60}^{o}}\); \(sđ\overset\frown{BC}={{90}^{o}}\); \(sđ\overset\frown{CD}={{120}^{o}}\) (Hình 7).

a) Xác định tâm và tính theo R bán kính đường tròn ngoại tiếp của các tam giác OAB, OBC, OAD, OCD.

b) Gọi I là giao điểm của AC và BD. Tính bán kính đường tròn ngoại tiếp của các tam giác IAB, IBC, IAD, IDC.

 

Phương pháp giải - Xem chi tiết

Tam giác đều cạnh a có bán kính đường tròn ngoại tiếp là \(R = \frac{{a\sqrt 3 }}{3}\).

Tâm đường tròn ngoại tiếp tam giác là giao điểm của ba đường trung trực của tam giác đó.

Đường tròn ngoại tiếp tam giác vuông có tâm là trung điểm của cạnh huyền và bán kính bằng nửa cạnh huyền.

Lời giải chi tiết

a) Gọi G là trọng tâm của tam giác OAB. Tam giác OAB là tam giác đều cạnh AB = R nên có tâm đường tròn ngoại tiếp là G và bán kính đường tròn ngoại tiếp là \(\frac{{R\sqrt 3 }}{3}\).

Tam giác OBC vuông tại O, có cạnh huyền BC = \(R\sqrt 2 \) nên tâm, bán kính của đường tròn ngoại tiếp của nó lần lượt là trung điểm E của BC và \(\frac{{R\sqrt 2 }}{2}\).

Tương tự tâm, bán kính đường tròn ngoại tiếp tam giác OAD lần lượt là trung điểm F của AD và \(\frac{{R\sqrt 2 }}{2}\). Gọi H là trung điểm của DC và giao điểm của tia OH và cung nhỏ CD là K. Dễ thấy K là điểm chính giữa của cung nhỏ DC và KD = KO = KC = R. Vậy tâm và bán kính đường tròn ngoại tiếp tam giác ODC lần lượt là K và R.

b) Do \(\widehat {CAB} = \widehat {DBA} = {45^o}\) nên \(\widehat {AIB} = {90^o}\) hay AC vuông góc với BD. Mặt khác AB = R, BC = AD = \(R\sqrt 2 \) và DC = \(R\sqrt 3 \)do đó bán kính đường tròn ngoại tiếp của các tam giác IAB, IBC, IAD, IDC lần lượt là: \(\frac{R}{2};\frac{{R\sqrt 2 }}{2};\frac{{R\sqrt 2 }}{2};\frac{{R\sqrt 3 }}{2}\).

  • Giải bài 8 trang 86 sách bài tập toán 9 - Cánh diều tập 2

    Cho tam giác ABC vuông tại A có AB = 6, AC = 8, bán kính đường tròn nội tiếp là r, bán kính đường tròn ngoại tiếp là R. Tính (frac{r}{R}).

  • Giải bài 9 trang 86 sách bài tập toán 9 - Cánh diều tập 2

    Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính R. a) Chứng minh rằng O cũng là tâm đường tròn nội tiếp tam giác ABC. b) Vẽ tam giác IJK ngoại tiếp đường tròn (O; R) với JK // BC, IJ // AC, IK // AB. Chứng minh tam giác IJK đều. c) Gọi R’ là bán kính của đường tròn ngoại tiếp tam giác IJK và r là bán kính của đường tròn nội tiếp tam giác ABC. Tính (frac{r}{{R'}}).

  • Giải bài 10 trang 86 sách bài tập toán 9 - Cánh diều tập 2

    Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A, B. Đường thẳng AO cắt (O) và (O’) lần lượt tại hai điểm C, E (khác điểm A). Đường thẳng AO’ cắt (O) và (O’) lần lượt tại hai điểm D, F (khác điểm A). Chứng minh: a) C, B, F thẳng hàng; b) Bốn điểm C, D, E, F cùng nằm trên một đường tròn; c) A là tâm đường tròn nội tiếp tam giác BDE.

  • Giải bài 11 trang 86 sách bài tập toán 9 - Cánh diều tập 2

    Cho tam giác ABC vuông cân tại C và nội tiếp đường tròn (O; R). E là điểm tuỳ ý trên cung nhỏ AC của đường tròn đó. Gọi F là giao điểm của EB và CO, I là tâm đường tròn ngoại tiếp tam giác ECF. Chứng minh rằng khi E di chuyển trên cung nhỏ AC thì I luôn di chuyển trên một đoạn thẳng cố định.

  • Giải bài 6 trang 85 sách bài tập toán 9 - Cánh diều tập 2

    Cho tam giác nhọn ABC ((widehat B > widehat C)), phân giác AM. Gọi O, O1, O2 lần lượt là tâm đường tròn ngoại tiếp các tam giác ABC, AMB, AMC. Chứng minh rằng: a) OO1, OO2, O1O2 lần lượt là các đường trung trực của AB, AC, AM; b) Tam giác OO1O2 cân.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close