Giải bài 77 trang 107 SBT toán 10 - Cánh diềuMột người quan sát đứng ở bờ sông muốn đo độ rộng của khúc sông chỗ chảy qua vị trí đang đứng (khúc sông tương đối thẳng, có thể xem hai bờ song song Tổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Một người quan sát đứng ở bờ sông muốn đo độ rộng của khúc sông chỗ chảy qua vị trí đang đứng (khúc sông tương đối thẳng, có thể xem hai bờ song song với nhau). Từ vị trí đang đứng A, người đó đo được góc nghiêng α = 35° so với bờ sông tới một vị trí C quan sát được ở phía bờ bên kia. Sau đó di chuyển dọc bờ sông đến vị trí B cách A một khoảng d = 50 m và tiếp tục đo được góc nghiêng β=65° so với bờ sông tới vị trí C đã chọn (Hình 53). Hỏi độ rộng của con sông chỗ chảy qua vị trí người quan sát đang đứng là bao nhiêu mét (làm tròn kết quả đến hàng phần trăm)? Phương pháp giải - Xem chi tiết Độ rộng khúc sông là chiều cao kẻ từ đỉnh C của ∆ABC Bước 1: Tính góc ^ABC,^ACB Bước 2: Sử dụng định lí sin để tính độ dài BC của ∆ABC Bước 3: Tính diện tích tam giác ABC theo công thức S=12BC.AB.sin^ABC Bước 4: Tính chiều cao hC của tam giác ABC theo công thức S=12AB.hC rồi kết luận Lời giải chi tiết Ta có: ^ABC=1800−650=1150⇒^ACB=1800−(^CAB+^ABC)=300 Áp dụng định lí sin cho ∆ABC ta có: BCsinA=ABsinC⇒BC=AB.sinAsinC=50.sin350sin300≈57,36 (m) Diện tích tam giác ABC là: S=12BC.AB.sin^ABC=12.57,36.50.sin1150≈1299,65 (m2) Gọi hc là chiều cao kẻ từ đỉnh C của ∆ABC Ta có: S=12AB.hC⇒hC=2SAB≈51,99 (m) Vậy chiều rộng khúc sông là 51,99 m
|