Giải bài 63 trang 106 SBT toán 10 - Cánh diều

Cho bốn điểm A, B, C, D. Chứng minh \(\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {AC} .\overrightarrow {DB} + \overrightarrow {AD} .\overrightarrow {BC} = 0\) (*)

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Cho bốn điểm A, B, C, D. Chứng minh \(\overrightarrow {AB} .\overrightarrow {CD}  + \overrightarrow {AC} .\overrightarrow {DB}  + \overrightarrow {AD} .\overrightarrow {BC}  = 0\) (*)

Phương pháp giải - Xem chi tiết

Tách vectơ và đưa về các vectơ chung gốc (gốc A)

Lời giải chi tiết

Biến đổi vế trái (*) ta có:

\(\overrightarrow {AB} .\overrightarrow {CD}  + \overrightarrow {AC} .\overrightarrow {DB}  + \overrightarrow {AD} .\overrightarrow {BC}  = \)\(\overrightarrow {AB} .\left( {\overrightarrow {AD}  - \overrightarrow {AC} } \right) + \overrightarrow {AC} .\left( {\overrightarrow {AB}  - \overrightarrow {AD} } \right) + \overrightarrow {AD} .\left( {\overrightarrow {AC}  - \overrightarrow {AB} } \right)\)

\( = \overrightarrow {AB} .\overrightarrow {AD}  - \overrightarrow {AB} .\overrightarrow {AC}  + \overrightarrow {AB} .\overrightarrow {AC}  - \overrightarrow {AC} .\overrightarrow {AD}  + \overrightarrow {AC} .\overrightarrow {AD}  - \overrightarrow {AB} .\overrightarrow {AD}  = 0\) = VP (*) (ĐPCM)

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close