Bài 60 trang 40 SBT toán 8 tập 1

Giải bài 60 trang 40 sách bài tập toán 8. Biến đổi các biểu thức hữu tỉ thành phân thức...

Lựa chọn câu để xem lời giải nhanh hơn

Biến đổi các biểu thức hữu tỉ thành phân thức :

LG a

\(\displaystyle {\displaystyle {{x \over {x - 1}} - {{x + 1} \over x}} \over {\displaystyle {x \over {x + 1}} - {{x - 1} \over x}}}\)

Phương pháp giải:

Thực hiện các phép tính lần lượt theo đúng quy tắc đã học. Sử dụng các qui tắc cộng, trừ, nhân, chia các phân thức.

Biến đổi để xuất hiện nhân tử chung và rút gọn phân thức.

Lời giải chi tiết:

\(\displaystyle {\displaystyle {{x \over {x - 1}} - {{x + 1} \over x}} \over {\displaystyle {x \over {x + 1}} - {{x - 1} \over x}}}\)

\(\displaystyle  = \left( {{x \over {x - 1}} - {{x + 1} \over x}} \right)\)\(:\displaystyle \left( {{x \over {x + 1}} - {{x - 1} \over x}} \right)\)

\(\displaystyle  = {{{x^2} - \left( {x + 1} \right)\left( {x - 1} \right)} \over {x\left( {x - 1} \right)}}\)\(:\displaystyle {{{x^2} - \left( {x - 1} \right)\left( {x + 1} \right)} \over {x\left( {x + 1} \right)}} \)

\(\begin{array}{l}
= \dfrac{{{x^2} - \left( {{x^2} - 1} \right)}}{{x\left( {x - 1} \right)}}:\dfrac{{{x^2} - \left( {{x^2} - 1} \right)}}{{x\left( {x + 1} \right)}}\\
= \dfrac{1}{{x\left( {x - 1} \right)}}:\dfrac{1}{{x\left( {x + 1} \right)}}
\end{array}\)

\(\displaystyle = {1 \over {x\left( {x - 1} \right)}}.{{x\left( {x + 1} \right)} \over 1} = {{x + 1} \over {x - 1}}\)

LG b

\(\displaystyle {\displaystyle {{5 \over 4} - {5 \over {x + 1}}} \over {\displaystyle {{9 - {x^2}} \over {{x^2} + 2x + 1}}}}\)

Phương pháp giải:

Thực hiện các phép tính lần lượt theo đúng quy tắc đã học. Sử dụng các qui tắc cộng, trừ, nhân, chia các phân thức.

Biến đổi để xuất hiện nhân tử chung và rút gọn phân thức.

Lời giải chi tiết:

\(\displaystyle {\displaystyle {{5 \over 4} - {5 \over {x + 1}}} \over {\displaystyle {{9 - {x^2}} \over {{x^2} + 2x + 1}}}}\)

\( \displaystyle = \left( {{5 \over 4} - {5 \over {x + 1}}} \right):\left( {{{9 - {x^2}} \over {{x^2} + 2x + 1}}} \right)\)

\(\displaystyle = {{5\left( {x + 1} \right) - 20} \over {4\left( {x + 1} \right)}}:{{\left( {3 + x} \right)\left( {3 - x} \right)} \over {{{\left( {x + 1} \right)}^2}}}\)

\(\begin{array}{l}
= \dfrac{{5x + 5 - 20}}{{4\left( {x + 1} \right)}}:\dfrac{{\left( {3 + x} \right)\left( {3 - x} \right)}}{{{{\left( {x + 1} \right)}^2}}}\\
= \dfrac{{5x - 15}}{{4\left( {x + 1} \right)}}.\dfrac{{{{\left( {x + 1} \right)}^2}}}{{\left( {3 + x} \right)\left( {3 - x} \right)}}
\end{array}\)

\( \displaystyle = {{5\left( {x - 3} \right)} \over {4\left( {x + 1} \right)}}.{{{{\left( {x + 1} \right)}^2}} \over {\left( {3 + x} \right)\left( {3 - x} \right)}}\)

\(\displaystyle = {{ - 5\left( {3 - x} \right)\left( {x + 1} \right)} \over {4\left( {3 + x} \right)\left( {3 - x} \right)}} = {{ - 5\left( {x + 1} \right)} \over {4\left( {3 + x} \right)}}\)

HocTot.Nam.Name.Vn

  • Bài 61 trang 40 SBT toán 8 tập 1

    Giải bài 61 trang 40 sách bài tập toán 8. Một phân thức có giá trị bằng 0 khi giá trị của tử thức bằng 0 còn giá trị của mẫu thức khác 0. Tìm các giá trị của x để giá trị của mỗi phân thức sau bằng 0...

  • Bài 62 trang 40 SBT toán 8 tập 1

    Giải bài 62 trang 40 sách bài tập toán 8. Đối với mỗi biểu thức sau, hãy tìm điều kiện của x để giá trị của biểu thức được xác định :

  • Bài 63 trang 40 SBT toán 8 tập 1

    Giải bài 63 trang 40 sách bài tập toán 8. Tìm giá trị của x để giá trị của các biểu thức trong bài tập 62 bằng 0...

  • Bài 64 trang 41 SBT toán 8 tập 1

    Giải bài 64 trang 41 sách bài tập toán 8. Tìm điều kiện của x để giá trị của biểu thức được xác định và chứng minh rằng với điều kiện đó biểu thức không phụ thuộc vào biến ...

  • Bài 65 trang 41 SBT toán 8 tập 1

    Giải bài 65 trang 41 sách bài tập toán 8. Chứng minh rằng : a. Giá trị của biểu thức ...

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close