Giải bài 6 trang 19 sách bài tập toán 8 - Chân trời sáng tạoRút gọn các phân thức sau: a) \(\frac{{5y - xy}}{{{x^2} - 25}}\); Đề bài Rút gọn các phân thức sau: a) \(\frac{{5y - xy}}{{{x^2} - 25}}\); b) \(\frac{{9 + 6x + {x^2}}}{{3x + 9}}\) c) \(\frac{{2{x^3}y + 2x{y^3}}}{{{x^4} - {y^4}}}\) d) \(\frac{{2 - 4x}}{{4{x^2} - 4x + 1}}\) e) \(\frac{{x - 2}}{{{x^3} - 8}}\) g) \(\frac{{{x^4}{y^2} - {x^2}{y^4}}}{{{x^2}\left( {x + y} \right)}}\) Phương pháp giải - Xem chi tiết Sử dụng kiến thức rút gọn phân thức để rút gọn: Để rút gọn một phân thức, ta thường thực hiện như sau: + Phân tích cả tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung. + Chia cả tử vào mẫu cho nhân tử chung. Lời giải chi tiết a) \(\frac{{5y - xy}}{{{x^2} - 25}} = \frac{{y\left( {5 - x} \right)}}{{\left( {x - 5} \right)\left( {x + 5} \right)}} = \frac{{ - y}}{{x + 5}}\); b) \(\frac{{9 + 6x + {x^2}}}{{3x + 9}} = \frac{{{x^2} + 2.x.3 + {3^2}}}{{3\left( {x + 3} \right)}} = \frac{{{{\left( {x + 3} \right)}^2}}}{{3\left( {x + 3} \right)}} = \frac{{x + 3}}{3}\); c) \(\frac{{2{x^3}y + 2x{y^3}}}{{{x^4} - {y^4}}} = \frac{{2xy\left( {{x^2} + {y^2}} \right)}}{{\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)}} = \frac{{2xy}}{{{x^2} - {y^2}}}\); d) \(\frac{{2 - 4x}}{{4{x^2} - 4x + 1}} = \frac{{2\left( {1 - 2x} \right)}}{{{{\left( {1 - 2x} \right)}^2}}} = \frac{2}{{1 - 2x}}\); e) \(\frac{{x - 2}}{{{x^3} - 8}} = \frac{{x - 2}}{{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}} = \frac{1}{{{x^2} + 2x + 4}}\); g) \(\frac{{{x^4}{y^2} - {x^2}{y^4}}}{{{x^2}\left( {x + y} \right)}} = \frac{{{x^2}{y^2}\left( {{x^2} - {y^2}} \right)}}{{{x^2}\left( {x + y} \right)}} = \frac{{{y^2}\left( {x + y} \right)\left( {x - y} \right)}}{{\left( {x + y} \right)}} = {y^2}\left( {x - y} \right)\).
|