Giải bài 5 trang 22 vở thực hành Toán 8a) Tìm đơn thức B nếu 4x3y2 : B = −2xy. Đề bài a) Tìm đơn thức B nếu 4x3y2 : B = −2xy. b) Với đơn thức B tìm được ở câu a, hãy tìm đơn thức H để \(\left( {4{x^3}{y^2}\;-3{x^2}{y^3}} \right):B = - 2xy + H\). Phương pháp giải - Xem chi tiết a) Sử dụng quy tắc chia đơn thức cho đơn thức để tìm B; b) Sử dụng quy tắc chia đa thức cho đơn thức H. Lời giải chi tiết a) Ta có \(4{x^3}{y^2}\;:B = - 2xy\) nên \(B = 4{x^3}{y^2}\;:\left( { - 2xy} \right) = - 2{x^2}y\). b) Từ phép chia đã cho, ta suy ra \(\begin{array}{l}H = \;\left( {4{x^3}{y^2}\;-3{x^2}{y^3}} \right):B\; + \;2xy\\ = \;\left( {4{x^3}{y^2}\;-3{x^2}{y^3}} \right):\;\left( { - 2{x^2}y} \right)\; + \;2xy\\ = - 2xy + \frac{3}{2}{y^2} + 2xy\\ = \frac{3}{2}{y^2}.\end{array}\) Vậy ta có phép chia \(\left( {4{x^3}{y^2}\;-3{x^2}{y^3}} \right):\left( { - 2{x^2}y} \right) = - 2xy + \frac{3}{2}{y^2}\)
|