Giải bài 5 trang 114, 115 vở thực hành Toán 9

Cho đường tròn tâm O, bán kính R. Từ điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC với dường tròn tâm O; B, C là các tiếp điểm. a) Chứng minh AO là đường trung trực của BC. b) Kẻ đường kính CD. Chứng minh BD song song với AO. c) Kẻ OM vuông góc với OB (M thuộc AC). Chứng minh (MO = MA).

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Cho đường tròn tâm O, bán kính R. Từ điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC với dường tròn tâm O; B, C là các tiếp điểm.

a) Chứng minh AO là đường trung trực của BC.

b) Kẻ đường kính CD. Chứng minh BD song song với AO.

c) Kẻ OM vuông góc với OB (M thuộc AC). Chứng minh \(MO = MA\).

Phương pháp giải - Xem chi tiết

a) + Chứng minh \(AB = AC\) nên A thuộc đường trung trực của đoạn thẳng BC.

+ Chứng minh \(OB = OC\) nên O thuộc đường trung trực của đoạn thẳng BC.

+ Do đó, OA là trung trực của BC

b) Chứng minh tam giác BCD vuông tại B, suy ra \(BD \bot BC\). Mà \(AO \bot BC\) nên BD // AO.

c) + Chứng minh \(\widehat {MOA} + \widehat {AOB} = {90^o}\), \(\widehat {MAO} = \widehat {BAO}\), \(\widehat {MAO} + \widehat {BOA} = {90^o}\) nên \(\widehat {MOA} = \widehat {MAO}\).

+ Chứng minh \(\Delta AMO\) cân tại M nên \(MO = MA\).

Lời giải chi tiết

(H.5.32)

a) Xét hai tiếp tuyến AB, AC của (O) cắt nhau tại A, ta có \(AB = AC\) nên A thuộc đường trung trực của đoạn thẳng BC. Mặt khác, \(OB = OC\) (cùng bằng bán kính). Do đó O thuộc đường trung trực của đoạn thẳng BC.

Vậy OA là đường trung trực của BC.

b) Xét tam giác BCD có BO là đường trung tuyến, \(BO = \frac{1}{2}CD\), suy ra tam giác CBD vuông tại B, hay \(BD \bot BC\). Mặt khác \(AO \bot BC\) (do AO là đường trung trực của BC)

Từ đó suy ra BD song song với AO.

c) Theo giả thiết, ta có \(OM \bot OB\), suy ra \(\widehat {MOA} + \widehat {AOB} = {90^o}\). (1)

Ta có \(\widehat {MAO} = \widehat {BAO}\) (do A là giao điểm của hai tiếp tuyến của (O)) 

Vì AB là tiếp tuyến của (O) nên \(AB \bot OB\). Do đó, \(\widehat {OAB} + \widehat {AOB} = {90^o}\), suy ra \(\widehat {MAO} + \widehat {BOA} = {90^o}\) (2)

Từ (1) và (2) suy ra: \(\widehat {MOA} = \widehat {MAO}\), do đó \(\Delta AMO\) cân tại M nên \(MO = MA\).

  • Giải bài 4 trang 114 vở thực hành Toán 9

    Cho SA và SB là hai tiếp tuyến cắt nhau của đường tròn (O) (A và B là hai tiếp điểm). Gọi M là một điểm tùy ý trên cung nhỏ AB. Tiếp tuyến của (O) tại M cắt SA tại E và cắt SB tại F. a) Chứng minh rằng chu vi của tam giác SEF=SA+SB. b) Giả sử M là giao điểm của đoạn SO với đường tròn (O). Chứng minh rằng (SE = SF).

  • Giải bài 3 trang 113, 114 vở thực hành Toán 9

    Cho góc xOy với đường phân giác Ot và điểm A trên cạnh Ox, điểm B trên cạnh Oy sao cho (OA = OB). Đường thẳng qua A vuông góc với Ox cắt Ot tại M. Chứng minh rằng OA và OB là hai tiếp tuyến cắt nhau của đường tròn (M; MA).

  • Giải bài 2 trang 113 vở thực hành Toán 9

    Cho đường tròn (O) đi qua ba đỉnh A, B và C của một tam giác cân tại A. Chứng minh rằng đường thẳng đi qua A và song song với BC là một tiếp tuyến của (O).

  • Giải bài 1 trang 113 vở thực hành Toán 9

    Bạn Thanh cắt 4 hình tròn bằng giấy có bán kính lần lượt là 4 cm, 6 cm, 7 cm và 8 cm để dán trang trí trên một mảnh giấy, trên đó có vẽ trước hai đường thẳng a và b. Biết rằng a và b là hai đường thẳng song song với nhau và cách nhau một khoảng 6 cm (nghĩa là mọi điểm trên đường thẳng b đều cách a một khoảng 6 cm). Hỏi nếu bạn Thanh dán sao cho tâm của cả 4 hình tròn đều nằm trên đường thẳng b thì hình tròn nào sẽ che khuất một phần của đường thẳng a, hình tròn nào sẽ không che khuất một phần củ

  • Giải câu hỏi trắc nghiệm trang 112, 113 vở thực hành Toán 9

    Cho đường thẳng a và một điểm O cách a một khoảng bằng 6cm. Khẳng định nào sau đây là đúng về vị trí tương đối của đường thẳng a và đường tròn (O; 9cm)? A. Đường thẳng a cắt đường tròn (O) tại hai điểm. B. Đường thẳng a tiếp xúc với đường tròn (O). C. Đường thẳng a và đường tròn (O) không có điểm chung. D. Đường thẳng a và đường tròn (O) có duy nhất điểm chung.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close