Giải bài 46 trang 61 SBT toán 10 - Cánh diều

Tập nghiệm của bất phương trình \( - 5{x^2} + 6x + 11 \le 0\) là:

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Tập nghiệm của bất phương trình \( - 5{x^2} + 6x + 11 \le 0\) là:

A. \(\left[ { - 1;\frac{{11}}{5}} \right]\)

B. \(\left( { - 1;\frac{{11}}{5}} \right)\)

C. \(x \in \left( { - \infty ; - 1} \right) \cup \left( {\frac{{11}}{5}; + \infty } \right)\)

D. \(x \in \left( { - \infty ; - 1} \right] \cup \left[ {\frac{{11}}{5}; + \infty } \right)\)

Phương pháp giải - Xem chi tiết

Bước 1: Xác định dấu của hệ số \(a\) và tìm nghiệm của \(f\left( x \right)\) (nếu có)

Bước 2: Sử dụng định lý về dấu của tam thức bậc hai để tìm tập hợp các giá trị của của x sao cho \(f\left( x \right)\) mang dấu thỏa mãn bất phương trình

+ Nếu \(\Delta  < 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\)

+ Nếu \(\Delta  = 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\backslash \left\{ {\frac{{ - b}}{{2a}}} \right\}\)

+ Nếu \(\Delta  > 0\) thì \(f\left( x \right)\) có hai nghiệm \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\). Khi đó:

\(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x\) thuộc các khoảng \(\left( { - \infty ;{x_1}} \right) \cup \left( {{x_2}; + \infty } \right)\)

\(f\left( x \right)\) trái dấu với hệ số \(a\) với mọi \(x\) thuộc khoảng \(\left( {x{ & _1};{x_2}} \right)\)

Lời giải chi tiết

Tam thức bậc hai \( - 5{x^2} + 6x + 11\) có hai nghiệm \({x_1} =  - 1;{x_2} = \frac{{11}}{5}\) và có hệ số \(a =  - 5 < 0\)

Bảng xét dấu:

 

Ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - 5{x^2} + 6x + 11\) mang dấu “-” là \(\left( { - \infty ; - 1} \right] \cup \left[ {\frac{{11}}{5}; + \infty } \right)\)

Chọn D.

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close