Bài 44 trang 85 SBT toán 8 tập 1

Giải bài 44 trang 85 sách bài tập toán 8. Cho tam giác ABC, đường trung tuyến AM. Gọi O là trung điểm của AM. Qua O kẻ đường thẳng d cắt các cạnh AB và AC. Gọi AA’, BB’, CC’ là các đường vuông góc kẻ từ A, B, C đến đường thẳng d. Chứng minh rằng:...

Đề bài

Cho tam giác \(ABC,\) đường trung tuyến \(AM.\) Gọi \(O\) là trung điểm của \(AM.\) Qua \(O\) kẻ đường thẳng \(d\) cắt các cạnh \(AB\) và \(AC.\) Gọi \(AA’, BB’, CC’\) là các đường vuông góc kẻ từ \(A, B, C\) đến đường thẳng \(d.\) Chứng minh rằng: \({{AA' = }}\displaystyle {{BB' + CC'} \over 2}\)

Phương pháp giải - Xem chi tiết

+) Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm cạnh bên thứ hai.

+) Đường trung bình của hình thang thì song song với hai cạnh đáy và bằng nửa tổng hai đáy.

Lời giải chi tiết

Ta có: \(BB’ ⊥ d\;\; (gt)\)

            \(CC’ ⊥ d\;\; (gt)\)

Suy ra: \(BB’ // CC’\)

Tứ giác \(BB’CC’\) là hình thang

Kẻ \(MM’ ⊥ d\)

\( ⇒ MM’ // BB’ // CC’\)

Ta lại có: \(M\) là trung điểm của \(BC\) (do AM là đường trung tuyến của tam giác ABC)

Nên \(MM’\) là đường trung bình của hình thang \(BB’CC’\)

\( \Rightarrow MM' = \displaystyle {{BB' + CC'} \over 2}\,\,\,\,\left( 1 \right)\)

Xét tam giác vuông \(AA’O\) và tam giác vuông \(MM’O:\)

\(\widehat {OA'A} = \widehat {OM'M}=90^0\)

\(AO = MO \;\;(gt)\)

\(\widehat {AOA'} = \widehat {MOM'}\) (đối đỉnh)

Do đó: \(∆ AA’O = ∆ MM’O\) (cạnh huyền, góc nhọn)

\(⇒ AA’ = MM’ \;\;\;(2)\)

Từ \((1)\) và \((2)\) suy ra: \({{AA' = }}\displaystyle {{BB' + CC'} \over 2}\).

HocTot.Nam.Name.Vn

  • Bài 4.1 phần bài tập bổ sung trang 85 SBT toán 8 tập 1

    Giải bài 4.1 phần bài tập bổ sung trang 85 sách bài tập toán 8. Trên hình bs.1, ta có AB // CD // EF // GH và AC = CE = EG. Biết CD = 9, GH = 13. Các độ dài AB và EF bằng:...

  • Bài 4.2 phần bài tập bổ sung trang 85 SBT toán 8 tập 1

    Giải bài 4.2 phần bài tập bổ sung trang 85 sách bài tập toán 8. Cho đường thẳng d và hai điểm A, B có khoảng cách đến đường thẳng d theo thứ tự là 20cm và 6cm. Gọi C là trung điểm của AB. Tính khoảng cách từ C đến đường thẳng d.

  • Bài 4.3 phần bài tập bổ sung trang 85 SBT toán 8 tập 1

    Giải bài 4.3 phần bài tập bổ sung trang 85 sách bài tập toán 8. Cho tam giác ABC. Gọi M là trung điểm của BC. Trên tia đối của tia BA lấy điểm D sao cho BD = AB. Gọi K là giao điểm của DM và AC. Chứng minh rằng AK = 2KC.

  • Bài 43 trang 85 SBT toán 8 tập 1

    Giải bài 43 trang 85 sách bài tập toán 8. Hình thang ABCD có AB // CD, AB = a, BC = b, CD = c, DA = d. Các đường phân giác của các góc ngoài đỉnh A và D cắt nhau tại M, các đường phân giác của các góc ngoài đỉnh B và C cắt nhau tại N.

  • Bài 42 trang 84 SBT toán 8 tập 1

    Giải bài 42 trang 84 sách bài tập toán 8. Chứng minh rằng trong hình thang mà hai đáy không bằng nhau, đoạn thẳng nối trung điểm của hai đường chéo bằng nửa hiệu hai đáy.

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close