Bài 4.22 trang 165 SBT đại số và giải tích 11

Giải bài 4.22 trang 165 sách bài tập đại số và giải tích 11. Tìm giới hạn của các hàm số sau :...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giới hạn của các hàm số sau

LG a

\(f\left( x \right) = {{{x^2} - 2x - 3} \over {x - 1}}\) khi \(x \to 3\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - 2x - 3}}{{x - 1}}\) \( = \dfrac{{{3^2} - 2.3 - 3}}{{3 - 1}} = 0\)

LG b

\(h\left( x \right) = {{2{x^3} + 15} \over {{{\left( {x + 2} \right)}^2}}}\) khi \(x \to  - 2\)

Lời giải chi tiết:

Ta có:

\(\mathop {\lim }\limits_{x \to  - 2} \left( {2{x^3} + 15} \right)\) \( = 2.{\left( { - 2} \right)^3} + 15 =  - 1 < 0\) và \(\mathop {\lim }\limits_{x \to  - 2} {\left( {x + 2} \right)^2} = 0\), \({\left( {x + 2} \right)^2} > 0,\forall x \ne  - 2\)

Vậy \(\mathop {\lim }\limits_{x \to  - 2} \dfrac{{2{x^3} + 15}}{{{{\left( {x + 2} \right)}^2}}} =  - \infty \)

LG c

\(k\left( x \right) = \sqrt {4{x^2} - x + 1} \) khi \(x \to  - \infty \)

Lời giải chi tiết:

\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } \sqrt {4{x^2} - x + 1} \cr 
& = \mathop {\lim }\limits_{x \to - \infty } \left| x \right|\sqrt {4 - {1 \over x} + {1 \over {{x^2}}}} \cr 
& = \mathop {\lim }\limits_{x \to - \infty } \left( { - x\sqrt {4 - {1 \over x} + {1 \over {{x^2}}}} } \right) \cr &= + \infty \cr} \)

LG d

\(h\left( x \right) = {{x - 15} \over {x + 2}}\) khi \(x \to  - {2^ + }\) và khi \(x \to  - {2^ - }\)

Lời giải chi tiết:

Ta có: \(\mathop {\lim }\limits_{x \to  - {2^ + }} \left( {x - 15} \right) =  - 2 - 15 =  - 17 < 0\) và \(\mathop {\lim }\limits_{x \to  - {2^ + }} \left( {x + 2} \right) = 0\), \(x + 2 > 0,\forall x >  - 2\)

Vậy \(\mathop {\lim }\limits_{x \to  - {2^ + }} \dfrac{{x - 15}}{{x + 2}} =  - \infty \)

Ta có: \(\mathop {\lim }\limits_{x \to  - {2^ - }} \left( {x - 15} \right) =  - 2 - 15 =  - 17 < 0\) và \(\mathop {\lim }\limits_{x \to  - {2^ - }} \left( {x + 2} \right) = 0\), \(x + 2 < 0,\forall x <  - 2\)

Vậy \(\mathop {\lim }\limits_{x \to  - {2^ - }} \dfrac{{x - 15}}{{x + 2}} =  + \infty \)

 HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close