Giải bài 4.19 trang 74 SGK Toán 7 tập 1 - Kết nối tri thứcCho tia Oz là tia phân giác của góc xOy. Lấy các điểm A,B,C lần lượt thuộc các tia Ox, Oy, Oz sao cho Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Khoa học tự nhiên... Đề bài Cho tia Oz là tia phân giác của góc xOy. Lấy các điểm A,B,C lần lượt thuộc các tia Ox, Oy, Oz sao cho \(\widehat {CAO} = \widehat {CBO}.\) a) Chứng minh rằng \(\Delta OAC = \Delta OBC\). b) Lấy điểm \(M\) trên tia đối của tia CO. Chứng minh rằng \(\Delta MAC = \Delta MBC\). Phương pháp giải - Xem chi tiết a) Chứng minh hai tam giác bằng nhau theo trường hợp góc – cạnh – góc. b) Chứng minh hai tam giác bằng nhau theo trường hợp cạnh – góc - cạnh. Lời giải chi tiết a) Trong \(\Delta OAC\) có: \(\widehat {AOC}+\widehat {OAC}+\widehat {OCA}=180^0\) Trong \(\Delta OBC\) có: \(\widehat {BOC}+\widehat {OBC}+\widehat {OCB}=180^0\) Mà \(\widehat {AOC} = \widehat {BOC}\)(do Oz là phân giác góc xOy) và \(\widehat {CAO}=\widehat {CBO}\) Do đó, \(\widehat {OCA}=\widehat {OCB}\). Xét \(\Delta OAC\) và \(\Delta OBC\) có: \(\widehat {AOC} = \widehat {BOC}\) (cmt) OC chung \(\widehat {OCA} = \widehat {OCB}(cmt)\) \(\Rightarrow \Delta OAC = \Delta OBC\)(g.c.g) b) Do \(\Delta OAC = \Delta OBC\) nên AC=BC ( 2 cạnh tương ứng) Vì \(\widehat {ACO}\) và \(\widehat {ACM}\) kề bù \(\widehat {BCO}\) và \(\widehat {BCM}\) kề bù Mà \(\widehat {ACO} = \widehat {BCO}\) nên \(\widehat {ACM} = \widehat {BCM}\) Xét \(\Delta MAC\) và \(\Delta MBC\) có: AC=BC (cmt) \(\widehat {ACM} = \widehat {BCM}\) (cmt) CM chung \( \Rightarrow \Delta MAC = \Delta MBC\)(c.g.c)
|