-
Bài 9.20 trang 76
Cho tam giác ABC với hai đường trung tuyến BN, CP và trọng tâm G. Hãy tìm số thích hợp vào chỗ chấm hỏi để được các đẳng thức: BG = ? BN, CG = ? CP; BG = ? GN, CG = ? GP.
Xem chi tiết -
Bài 9.21 trang 76
Chứng minh rằng: a) Trong một tam giác cân, hai đường trung tuyến ứng với 2 cạnh bên là hai đoạn thẳng bằng nhau. b) Ngược lại, nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.
Xem chi tiết -
Bài 9.22 trang 76
Cho tam giác ABC có các đường trung tuyến BM và CN cắt nhau tại G. Biết góc GBC lớn hơn góc GCB. Hãy so sánh BM và CN.
Xem chi tiết -
Bài 9.23 trang 76
Kí hiệu I là điểm đồng quy của ba đường phân giác trong tam giác ABC. Tính góc BIC khi biết góc BAC bằng 120
Xem chi tiết -
Bài 9.24 trang 76
Gọi BE và CF là hai đường phân giác của tam giác ABC cân tại A. Chứng minh BE = CF.
Xem chi tiết -
Bài 9.25 trang 76
Trong tam giác ABC, hai đường phân giác của các góc B và C cắt nhau tại D. Kẻ DP vuông góc với BC, DQ vuông góc với CA, DR vuông góc với AB. a) Hãy giải thích tại sao DP = DR. b) Hãy giải thích tại sao DP = DQ. c) Từ câu a và b suy ra DR = DQ. Tại sao D nằm trên tia phân giác của góc A? ( Đây là một cách chứng minh định lí 2)
Xem chi tiết