Giải bài 4.13 trang 58 SGK Toán 10 tập 1 – Kết nối tri thức

Cho hai điểm phân biệt A và B.

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Cho hai điểm phân biệt A và B.

a) Hãy xác định điểm K sao cho \(\overrightarrow {KA}  + 2\overrightarrow {KB}  = \overrightarrow 0 \).

b) Chứng minh rằng với mọi điểm O, ta có \(\overrightarrow {OK}  = \frac{1}{3}\overrightarrow {OA}  + \frac{2}{3}\overrightarrow {OB} .\)

Phương pháp giải - Xem chi tiết

Nhắc lại: Với ba điểm A, B, C bất kì ta luôn có:  \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

a)

Cách 1: Nhận xét về phương chiều, độ lớn của hai vecto \(\overrightarrow {KA} \) và \(\;\overrightarrow {KB} \), suy ra vị trí điểm K.

Cách 2: Biểu diễn vecto \(\overrightarrow {KA} \) (hoặc \(\;\overrightarrow {KB} \)) theo vecto \(\;\overrightarrow {AB} \).

b)

Biểu diễn vecto \(\overrightarrow {OK} \) bằng cách chèn điểm: \(\overrightarrow {OA}  = \overrightarrow {OK}  + \overrightarrow {KA} ;\;\,\overrightarrow {OB}  = \overrightarrow {OK}  + \overrightarrow {KB} .\)

Lời giải chi tiết

a)

Cách 1:

Ta có: \(\overrightarrow {KA}  + 2\overrightarrow {KB}  = \overrightarrow 0 \).

\( \Leftrightarrow \overrightarrow {KA}  =  - 2\overrightarrow {KB} \)

Suy ra vecto \(\overrightarrow {KA} \) và vecto\(\;\overrightarrow {KB} \) cùng phương, ngược chiều và \(KA = 2.KB\)

\( \Rightarrow K,A,B\)thẳng hàng, K nằm giữa A và B thỏa mãn: \(KA = 2.KB\)

Cách 2:

Ta có: \(\overrightarrow {KA}  + 2\overrightarrow {KB}  = \overrightarrow 0 \).

\(\begin{array}{l} \Leftrightarrow \left( {\overrightarrow {KB}  + \overrightarrow {BA} } \right) + 2\overrightarrow {KB}  = \overrightarrow 0 \\ \Leftrightarrow 3.\overrightarrow {KB}  + \overrightarrow {BA}  = \overrightarrow 0 \\ \Leftrightarrow 3.\overrightarrow {KB}  = \overrightarrow {AB} \\ \Leftrightarrow \overrightarrow {KB}  = \frac{1}{3}\overrightarrow {AB} \end{array}\)

Vậy K thuộc đoạn AB sao cho \(KB = \frac{1}{3}AB\).

b)

Với O bất kì, ta có:

\(\frac{1}{3}\overrightarrow {OA}  + \frac{2}{3}\overrightarrow {OB}  = \frac{1}{3}\left( {\overrightarrow {OK}  + \overrightarrow {KA} } \right) + \frac{2}{3}\left( {\overrightarrow {OK}  + \overrightarrow {KB} } \right) = \left( {\frac{1}{3}\overrightarrow {OK}  + \frac{2}{3}\overrightarrow {OK} } \right) + \left( {\frac{1}{3}\overrightarrow {KA}  + \frac{2}{3}\overrightarrow {KB} } \right) = \overrightarrow {OK}  + \frac{1}{3}\left( {\overrightarrow {KA}  + 2\overrightarrow {KB} } \right) = \overrightarrow {OK}\)

Vì \(\overrightarrow {KA}  + 2\overrightarrow {KB}  = \overrightarrow 0 \)

Vậy với mọi điểm O, ta có \(\overrightarrow {OK}  = \frac{1}{3}\overrightarrow {OA}  + \frac{2}{3}\overrightarrow {OB} .\)

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close