Giải bài 4 trang 35 sách bài tập toán 9 - Cánh diều tập 1Cho \(a,b,c,d\) là các số không âm thỏa mãn \(a > c + d,b > c + d\). Chứng minh: a) \(a + 2b > 3c + 3d\) b) \({a^2} + {b^2} > 2{c^2} + 2cd + 2{d^2}\) c) \(ab > {c^2} + cd + {d^2}\) Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Đề bài Cho \(a,b,c,d\) là các số không âm thỏa mãn \(a > c + d,b > c + d\). Chứng minh: a) \(a + 2b > 3c + 3d\) b) \({a^2} + {b^2} > 2{c^2} + 2cd + 2{d^2}\) c) \(ab > {c^2} + cd + {d^2}\) Phương pháp giải - Xem chi tiết Thay a, b vào biểu thức bên vế trái kết hợp với giả thiết \(a > c + d,b > c + d\). Lời giải chi tiết Do \(a > c + d,b > c + d\) và \(a,b,c,d\) là các số không âm nên ta có: a) \(a + 2b > \left( {c + d} \right) + 2\left( {c + d} \right)\) hay \(a + 2b > 3c + 3d\). b) \({a^2} + {b^2} > {\left( {c + d} \right)^2} + {\left( {c + d} \right)^2}\) hay \({a^2} + {b^2} > 2{c^2} + 4cd + {d^2}\) suy ra \({a^2} + {b^2} > 2{c^2} + 2cd + {d^2}\). c) \(ab > \left( {c + d} \right)\left( {c + d} \right)\) hay \(ab > {c^2} + 2cd + {d^2}\)suy ra \(ab > {c^2} + cd + {d^2}\).
|