Bài 38 trang 71 SBT toán 9 tập 1

Giải bài 38 trang 71 sách bài tập toán 9. Vẽ đồ thị của các hàm số đã cho trên cùng một mặt phẳng tọa độ...

Đề bài

Cho các hàm số : 

\(y = 2x - 2\);        (d1)

\(y =  - \dfrac{4}{3}x - 2\);      (d2)

\(y = \dfrac{1}{3}x + 3\).          (d3)        

a) Vẽ đồ thị của các hàm số đã cho trên cùng một mặt phẳng tọa độ .

b) Gọi giao điểm của đường thẳng (d3)  với (d1) và (d2) theo thứ tự là A, B. Tìm tọa độ của A, B

c) Tính khoảng cách AB. 

Phương pháp giải - Xem chi tiết

Cách vẽ đồ thị hàm số \(y = ax + b\) \((a \ne 0)\) 

Nếu \(b = 0\)  ta có hàm số \(y = ax\) . Đồ thị của  \(y = ax\)  là đường thẳng đi qua gốc tọa độ \(O(0;0)\) và điểm \(A(1;a)\);

Nếu \(b \ne 0\) thì đồ thị \(y = ax + b\) là đường thẳng đi qua các điểm \(A(0;b)\); \(B( - \dfrac{b}{a};0)\).

Khoảng cách giữa hai điểm \(A({x_1};{y_1})\) và \(B({x_2};{y_2})\)

\(AB = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \)

Lời giải chi tiết

a) +) Vẽ đồ thị hàm số \(y = 2x -2\)           (d1)     

Cho \(x = 0\)  thì \(y = - 2\). Ta có : \((0;-2)\)

Cho \(y = 0\) thì \(2x – 2 = 0\) \( \Leftrightarrow 2x = 2 \Leftrightarrow x = 1\). Ta có: \((1; 0)\)

Đồ thị hàm số đi qua hai điểm \((0; 2)\) và \((1; 0)\)

+) Vẽ đồ thị hàm số \(y =  - \dfrac{4}{3}x - 2\)       (d2)

Cho \(x = 0\) thì \(y = - 2\). Ta có: \((0;-2)\)

Cho \(y = 0\) thì \( - \dfrac{4 }{3}x - 2 = 0 \Leftrightarrow x =  - 1,5\) . Ta có: \(\left( { - 1,5;0} \right)\)

Đồ thị hàm số đi qua hai điểm \(\left( {0; - 2} \right)\) và \(\left( { - 1,5;0} \right)\)

+) Vẽ đồ thị hàm số \(y = \dfrac{1}{3}x + 3\)           (d3)

Cho \(x = 0\) thì \(y = 3.\) Ta có: \((0;3)\)

Cho \(y = 0\) thì \(\dfrac{1}{3}x + 3 = 0 \Leftrightarrow x =  - 9\). Ta có: \((-9; 0)\)

Đồ thị hàm số đi qua hai điểm \((0; 3)\) và \((-9; 0)\)

b) Phương trình hoành độ giao điểm của (d1) và (d3) :

\(\eqalign{
& 2x - 2 = {1 \over 3}x + 3 \cr 
& \Leftrightarrow 2x - {1 \over 3}x = 3 + 2 \cr 
& \Leftrightarrow {5 \over 3}x = 5 \Leftrightarrow x = 3 \cr} \)

Tung độ giao điểm: \(y = 2.3 - 2 \Leftrightarrow y = 6 - 2 = 4\)

Vậy tọa độ điểm A là : \(A(3; 4)\)

Phương trình hoành độ giao điểm của (d2) và (d3): 

\(\eqalign{
& - {4 \over 3}x - 2 = {1 \over 3}x + 3 \cr 
& \Leftrightarrow {1 \over 3}x + {4 \over 3}x = - 2 - 3 \cr 
& \Leftrightarrow {5 \over 3}x = - 5 \Leftrightarrow x = - 3 \cr} \)

Tung độ giao điểm :

\(y = \dfrac{1}{3}.\left( { - 3} \right) + 3 \Leftrightarrow y =  - 1 + 3 = 2\)

Vậy tọa độ điểm B là :\( B(-3 ; 2)\)

c) Ta có:

\(\eqalign{
& A{B^2} = {\left( {{x_A} - {x_B}} \right)^2} + {\left( {{y_A} - {y_B}} \right)^2} \cr 
& = {\left( {3 + 3} \right)^2} + {\left( {4 - 2} \right)^2} = 40 \cr 
& AB = \sqrt {40} = 2\sqrt {10} \cr} \).

HocTot.Nam.Name.Vn

  • Bài 37 trang 71 SBT toán 9 tập 1

    Giải bài 37 trang 71 sách bài tập toán 9. Cho các điểm M(-1 ; -2) , N(-2; -4), P(2; -3) , Q(3; -4,5). Tìm tọa độ của các điểm M’, N’, P’, Q’ lần lượt đồi xứng với các điểm M,N,P,Q qua trục Ox...

  • Bài 36 trang 70 SBT toán 9 tập 1

    Giải bài 36 trang 70 sách bài tập toán 9. Vẽ đồ thị của các hàm số sau trên cùng một mặt phẳng tọa độ:

  • Bài 35 trang 70 SBT toán 9 tập 1

    Bài giải 35 trang 70 sách bài tập toán 9. Tìm các giá trị của m và n trong mỗi trường hợp sau: Đường thẳng (d) đi qua hai điểm ...

  • Bài 34 trang 70 SBT toán 9 tập 1

    Giải bài 34 trang 70 sách bài tập toán 9. Với giá trị nào của m thì đường thẳng (d) đi qua gốc tọa độ ?...

  • Bài 33 trang 70 SBT toán 9 tập 1

    Giải bài 33 trang 70 sách bài tập toán 9. Với điều kiện nào của k và m thì hai đường thẳng sau sẽ trùng nhau ?

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close