Giải bài 35 trang 57 SBT toán 10 - Cánh diều

Một tình huống trong huấn luyện pháo binh được mô tả như sau: Trong mặt phẳng tọa độ \(Oxy\) (đơn vị trên hai trục tính theo mét), một viên đạn được bắn từ vị trí \(O\left( {0;0} \right)\) theo quỹ đạo là đường parabol \(y = - \frac{9}{{1\;000\;000}}{x^2} + \frac{3}{{100}}x\). Tìm khoảng cách theo trục hoành của viên đạn so với vị trí bắn khi viên đạn đang ở độ cao lớn hơn 15m (làm tròn kết quả đến hàng phần trăm theo đơn vị mét).

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Một tình huống trong huấn luyện pháo binh được mô tả như sau: Trong mặt phẳng tọa độ \(Oxy\) (đơn vị trên hai trục tính theo mét), một viên đạn được bắn từ vị trí \(O\left( {0;0} \right)\) theo quỹ đạo là đường parabol \(y =  - \frac{9}{{1\;000\;000}}{x^2} + \frac{3}{{100}}x\). Tìm khoảng cách theo trục hoành của viên đạn so với vị trí bắn khi viên đạn đang ở độ cao lớn hơn 15m (làm tròn kết quả đến hàng phần trăm theo đơn vị mét).

Phương pháp giải - Xem chi tiết

Giải bất phương trình

Lời giải chi tiết

Độ cao viên đạn lớn hơn 15 m nên \( - \frac{9}{{1\;000\;000}}{x^2} + \frac{3}{{100}}x > 15 \Leftrightarrow  - 3{x^2} + 10\;000x - 5\;000\;000 > 0\)

\( \Rightarrow \frac{{5\;000 - 1\;000\sqrt {10} }}{3} < x < \frac{{5\;000 + 1\;000\sqrt {10} }}{3}\)

Vậy khoảng cách theo trục hoành của viên đạn so với vị trí bắn viên đạn đang ở độ cao lớn hơn 15 m là nằm trong khoảng \(\left( {\frac{{5\;000 - 1\;000\sqrt {10} }}{3};\frac{{5\;000 + 1\;000\sqrt {10} }}{3}} \right)\) xấp xỉ \(\left( {612,57;2720,76} \right)\).

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close