Giải bài 3 trang 99 vở thực hành Toán 9 tập 2Cho hình bình hành ABCD nội tiếp đường tròn (O). Chứng minh rằng ABCD là hình chữ nhật. Đề bài Cho hình bình hành ABCD nội tiếp đường tròn (O). Chứng minh rằng ABCD là hình chữ nhật. Phương pháp giải - Xem chi tiết Do hình bình hành ABCD nội tiếp đường tròn (O) nên tổng các góc đối bằng \({180^o}\). Do đó, \(\widehat A = \widehat C = \frac{{\widehat A + \widehat C}}{2} = {90^o}\). Suy ra hình bình hành ABCD là hình chữ nhật. Lời giải chi tiết Do hình bình hành ABCD nội tiếp nên tổng các góc đối bằng \({180^o}\). Do đó \(\widehat A = \widehat C = \frac{{\widehat A + \widehat C}}{2} = {90^o}\). Do vậy hình bình hành ABCD có hai góc vuông nên là hình chữ nhật.
|