Giải bài 3 trang 57 sách bài tập toán 9 - Cánh diều tập 2

Galileo Galilei là người phát hiện ra quãng đường chuyển động của vật rơi tự do tỉ lệ thuận với bình phương của thời gian. Liên hệ giữa quãng đường chuyển động s (mét) và thời gian chuyển động x (giây) được cho bởi hàm số (s = 4,9{x^2}). Người ta thả một vật nặng từ độ cao 56 m trên tháp nghiêng Pi-sa xuống đất (sức cản của không khí không đáng kể). a) Hỏi sau thời gian 2,5 giây vật nặng còn cách mặt đất bao nhiêu mét? b) Khi vật nặng còn cách mặt đất 17,584 m thì nó đã rơi thời gian bao nhi

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Galileo Galilei là người phát hiện ra quãng đường chuyển động của vật rơi tự do tỉ lệ thuận với bình phương của thời gian. Liên hệ giữa quãng đường chuyển động s (mét) và thời gian chuyển động x (giây) được cho bởi hàm số \(s = 4,9{x^2}\). Người ta thả một vật nặng từ độ cao 56 m trên tháp nghiêng Pi-sa xuống đất (sức cản của không khí không đáng kể).

a) Hỏi sau thời gian 2,5 giây vật nặng còn cách mặt đất bao nhiêu mét?

b) Khi vật nặng còn cách mặt đất 17,584 m thì nó đã rơi thời gian bao nhiêu giây?

Phương pháp giải - Xem chi tiết

a) Thay \(x = 2,5\) vào \(s = 4,9{x^2}\).

b) Bước 1: Tìm quãng đường s vật nặng đã đi được.

Bước 2: Thay s vừa tìm được vào \(s = 4,9{x^2}\) để tìm x.

Lời giải chi tiết

a) Trong 2,5 giây, vật nặng rơi được quãng đường là: \(s = {4,9.2,5^2} = 30,625m\)

Khi đó, vật nặng còn cách mặt đất: \(56 - 30,625 = 25,375m\).

b) Quãng đường vật nặng đi được khi cách mặt đất 17,584 m là: \(56 - 17,584 = 38,416m\)

Ta có \(s = 4,9{x^2}\) hay \(x = \sqrt {\frac{s}{{4,9}}}  = \sqrt {\frac{{38,416}}{{4,9}}}  = 2,8\)

Vậy vật nặng đi hết thời gian là: 2,8 giây.

  • Giải bài 4 trang 57 sách bài tập toán 9 - Cánh diều tập 2

    Một viên bi lăn trên mặt phẳng nghiêng. Đoạn đường đi được liên hệ với thời gian bởi hàm số (y = a{t^2}) (t tính bằng giây, y tính bằng mét). Người ta đo được quãng đường viên bi lăn được ở thời điểm 3 giây là 2,25 m. Hỏi khi viên bi lăn được quãng đường 6,25 m thì nó đã lăn trong bao lâu?

  • Giải bài 5 trang 57 sách bài tập toán 9 - Cánh diều tập 2

    a) Điểm (Aleft( {0,2;1} right)) thuộc đồ thị hàm số nào trong các hàm số sau: (y = 10{x^2};y = - 10{x^2};y = 25{x^2};y = - 25{x^2};y = frac{1}{{25}}{x^2};y = - frac{1}{{25}}{x^2}) b) Trong các điểm (Bleft( { - 2;4sqrt 3 } right);Cleft( { - 2; - 4sqrt 3 } right);Dleft( { - 0,2; - 0,4sqrt 3 } right);Eleft( {0,4sqrt 3 ;0,2} right)), điểm nào thuộc đồ thị hàm số (y = - sqrt 3 {x^2}).

  • Giải bài 6 trang 58 sách bài tập toán 9 - Cánh diều tập 2

    Cho A là giao điểm của hai đường thẳng (y = x - 1) và (y = - 2x + 8). Chứng minh rằng điểm A thuộc đồ thị hàm số (y = frac{2}{9}{x^2}).

  • Giải bài 7 trang 58 sách bài tập toán 9 - Cánh diều tập 2

    Cho hàm số (y = k{x^2}left( {k ne 0} right)) có đồ thị là một parabol với đỉnh O như Hình 3. a) Tìm giá trị của k. b) Tìm tung độ của điểm thuộc parabol có hoành độ bằng 2. c) Tìm các điểm thuộc parabol có tung độ bằng 2. d*) Tìm các điểm (không phải điểm O) thuộc parabol sao cho khoảng cách từ điểm đó đến trục hoành gấp ba lần khoảng cách từ điểm đó đến trục tung.

  • Giải bài 8 trang 58 sách bài tập toán 9 - Cánh diều tập 2

    Nước từ một vòi nước (đặt trên mặt nước) được phun lên cao sẽ đạt đến một độ cao nào đó rồi rơi xuống (Hình 4). Giả sử nước được phun ra bắt đầu từ vị trí A trên mặt nước và rơi trở lại mặt nước ở vị trí B, đường đi của nước có dạng một phần của parabol (y = - frac{1}{4}{x^2}) trong hệ trục toạ độ Oxy, với gốc toạ độ O là vị trí cao nhất mà nước được phun ra đạt được so với mặt nước, trục Ox song song với AB, x và y được tính theo đơn vị mét. Tính chiều cao h từ điểm O đến mặt nước, biết kh

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close