Giải bài 3 trang 54 SGK Toán 10 tập 1 – Cánh diềuGiải các bất phương trình bậc hai sau: Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Giải các bất phương trình bậc hai sau: a) \(2{x^2} - 5x + 3 > 0\) b) \( - {x^2} - 2x + 8 \le 0\) c) \(4{x^2} - 12x + 9 < 0\) d) \( - 3{x^2} + 7x - 4 \ge 0\) Phương pháp giải - Xem chi tiết Giải bất phương trình dạng \(f\left( x \right) > 0\). Bước 1: Xác định dấu của hệ số a và tìm nghiệm của \(f\left( x \right)\)(nếu có) Bước 2: Sử dụng định lí về dấu của tam thức bậc hai để tìm tập hợp những giá trị của x sao cho \(f\left( x \right)\) mang dấu “+” Bước 3: Các bất phương trình bậc hai có dạng \(f\left( x \right) < 0,f\left( x \right) \ge 0,f\left( x \right) \le 0\) được giải bằng cách tương tự. Lời giải chi tiết a) Ta có \(a = 2 > 0\) và \(\Delta = {\left( { - 5} \right)^2} - 4.2.3 = 1 > 0\) => \(2{x^2} - 5x + 3 = 0\) có 2 nghiệm phân biệt \({x_1} = 1,{x_2} = \frac{3}{2}\). Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} - 5x + 3\) mang dấu “+” là \(\left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\) Vậy tập nghiệm của bất phương trình \(2{x^2} - 5x + 3 > 0\) là \(\left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\) b) Ta có \(a = - 1 < 0\) và \(\Delta ' = {\left( { - 1} \right)^2} - \left( { - 1} \right).8 = 9 > 0\) => \( - {x^2} - 2x + 8 = 0\)có 2 nghiệm phân biệt \({x_1} = - 4,{x_2} = 2\). Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - {x^2} - 2x + 8\) mang dấu “-” là \(\left( { - \infty ; - 4} \right] \cup \left[ {2; + \infty } \right)\) Vậy tập nghiệm của bất phương trình \( - {x^2} - 2x + 8 \le 0\) là \(\left( { - \infty ; - 4} \right] \cup \left[ {2; + \infty } \right)\) c) Ta có \(a = 4 > 0\) và \(\Delta ' = {\left( { - 6} \right)^2} - 4.9 = 0\) => \(4{x^2} - 12x + 9 = 0\) có nghiệm duy nhất \(x = \frac{3}{2}\). Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(4{x^2} - 12x + 9\) mang dấu “-” là \(\emptyset \) Vậy tập nghiệm của bất phương trình \(4{x^2} - 12x + 9 < 0\) là \(\emptyset \) d) \( - 3{x^2} + 7x - 4 \ge 0\) Ta có \(a = - 3 < 0\) và \(\Delta = {7^2} - 4.\left( { - 3} \right).\left( { - 4} \right) = 1 > 0\) => \( - 3{x^2} + 7x - 4 = 0\) có 2 nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{4}{3}\). Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 7x - 4\) mang dấu “+” là \(\left[ {1;\frac{4}{3}} \right]\) Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 7x - 4 \ge 0\) là \(\left[ {1;\frac{4}{3}} \right]\)
|