Bài 3 trang 199 SBT hình học 11Giải bài 3 trang 199 sách bài tập hình học 11. Cho tứ diện SABC có SA, SB, SC vuông góc với nhau từng đôi một. Gọi H là hình chiếu vuông góc của S lên mp(ABC)... Đề bài Cho tứ diện SABC có SA, SB, SC vuông góc với nhau từng đôi một. Gọi H là hình chiếu vuông góc của S lên mp(ABC). a) Chứng minh rằng H là trực tâm của tam giác ABC. b) Chứng minh rằng 1SH2=1SA2+1SB2+1SC2 c) Chứng minh rằng (SSBC)2 = (SHBC). (SABC) và (SABC)2 = (SSAB)2 + (SSBC)2 + (SSCA)2 d) Chứng minh rằng SG2 = (SA2 + SB2 + SC2)/9 (G là trọng tâm của tam giác ABC) và (AB + BC + CA)2 ≤ 6(SA2 + SB2 + SC2). e) Chứng minh rằng tam giác ABC có ba góc nhọn và SA2tanA = SB2tanB = SC2tanC = 2SABC Lời giải chi tiết a) Ta chứng minh: CH ⊥ AB & AH ⊥ BC Ta có: AB ⊥ SC (do SH ⊥ (ABC)) & AB ⊥ SH (do SC ⊥ (SAB)) ⇒ AB ⊥ (SCH) ⇒ AB ⊥ CH (1) Tương tự, ta có BC ⊥ (SAH) nên AH ⊥ BC (2) Từ (1) và (2) cho ta H là trực tâm ΔABC. b) Giả sử CH kéo dài cắt AB tại C’, ta có AB ⊥ CC' (do H là trực tâm) & AB ⊥ SC' (do AB ⊥ (SCH)) Trong tam giác SCC’, ta có 1SH2=1SC2+1SC′2 (3) Mà SC’ là đường cao trong tam giác vuông SAB nên Tương tự, ta có (SSCA )2 = SHCA. SABC (7) (SSAB )2 = SHAB. SABC (8) Cộng (6), (7), (8) vế theo vế, ta có (SSBC)2+(SSCA)2+(SSAB)2=SABC(SHBC+SHCA+SHAB)=SABC.SABC=(SABC)2 Áp dụng bất đẳng thức Cô-si, ta có: 2AB. BC ≤ AB2 + BC2 2CA. AB ≤ CA2 + AB2 2BC. CA ≤ BC2 + CA2 Suy ra (AB + BC + CA)2 = AB2 + BC2 + CA2 + 2(AB.BC + BC.CA + CA.AB) ≤ 3(AB2 + BC2 + CA2) ≤ 3(SA2 + SB2 + SB2 + SC2 + SC2 + SA2) ≤ 6(SA2 + SB2 + SC2). e) Đặt SA = a, SB = b, SC = c Trong ΔABC, ta có: cosA=AB2+AC2−BC22AB.AC =a2√(a2+b2)(a2+c2)>0 Tương tự cosB > 0, cosC > 0. Vậy ΔABC có ba góc nhọn. Mặt khác, ta có: SA4.tan2A=a4(1cos2A−1)=a4[(a2+b2)(a2+c2)a4−1] = (a2 + b2)(a2 + c2) - a4 = a2 b2 + b2 c2 + c2 a2 = 4(SSAB2 + SSBC2 + SSCA2) = 4(SABC)2 ⇒ SA2tanA = 2SABC. Tương tự, ta có: SB2tanB = SC2tanC = 2SABC. Vậy SA2tanA = SB2tanB = SC2tanC = 2SABC. HocTot.Nam.Name.Vn
|