Giải bài 3 trang 17 vở thực hành Toán 8

Rút gọn biểu thức: \(x\left( {{x^2}\;-y} \right)-{x^2}\left( {x + y} \right) + xy\left( {x-1} \right)\).

Đề bài

Rút gọn biểu thức: \(x\left( {{x^2}\;-y} \right)-{x^2}\left( {x + y} \right) + xy\left( {x-1} \right)\).

Phương pháp giải - Xem chi tiết

Sử dụng quy tắc nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.

Lời giải chi tiết

\(\begin{array}{*{20}{l}}{x\left( {{x^2}\;-y} \right)-{x^2}\left( {x + y} \right) + xy\left( {x-1} \right)}\\{ = x.{x^2}\;-x.y-{x^{2\;}}.x-{x^{2\;}}.y + xy.x-xy.1}\\{ = {x^3}\;-xy-{x^{3\;}}-{x^2}y + {x^2}y-xy}\\{ = \left( {{x^3}\;-{x^3}} \right) + \left( { - {x^2}y{\rm{  +  }}{x^2}y} \right)-\left( {xy + xy} \right) = -2xy.}\end{array}\)

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close