Bài 28 trang 107 SBT toán 9 tập 1

Giải bài 28 trang 107 sách bài tập toán 9. Hãy biến đổi các tỉ số lượng giác sau đây thành tỉ số lượng giác của các góc nhỏ hơn 45°

Đề bài

Hãy biến đổi các tỉ số lượng giác sau đây thành tỉ số lượng giác của các góc nhỏ hơn 45° ;

\(\sin 75^\circ ,\cos 53^\circ ,\sin 47^\circ 20',\)\(tg62^\circ ,\cot g82^\circ 45'.\)   

Phương pháp giải - Xem chi tiết

Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.

Với hai góc \(\alpha ,\beta \) sao cho  \(\alpha  + \beta  = 90^\circ \)

Ta có: \(\sin \alpha  = \cos \beta ;\) \(\sin \beta  = \cos \alpha ;\)\(\tan \alpha  = \cot \beta ;\) \(\tan \beta  = \cot \alpha. \) 

Lời giải chi tiết

Vì \(75^\circ  + 15^\circ  = 90^\circ \) nên \(\sin 75^\circ  = \cos 15^\circ \)

Vì \(53^\circ  + 37^\circ  = 90^\circ \) nên \(\cos 53^\circ  = \sin 37^\circ \)

Vì \(47^\circ 20' + 42^\circ 40' = 90^\circ \) nên \(\sin 47^\circ 20' = \cos 42^\circ 40'\)

Vì \(62^\circ  + 28^\circ  = 90^\circ \) nên \(tg62^\circ  = \cot 28^\circ \) 

Vì \(82^\circ 45' + 7^\circ 15' = 90^\circ \) nên \(\cot 82^\circ 45' = tg7^\circ 15'\)

HocTot.Nam.Name.Vn

  • Bài 29 trang 107 SBT toán 9 tập 1

    Giải bài 29 trang 107 sách bài tập toán 9. Xét quan hệ giữa hai góc trong mỗi biểu thức rồi tính:...sin32..cos58...

  • Bài 30 trang 107 SBT toán 9 tập 1

    Giải bài 30 trang 107 sách bài tập toán 9. Đường cao MQ của tam giác vuông MNP chia cạnh huyền NP thành hai đoạn NQ = 3, PQ = 6. Hãy so sánh cotgN và cotgP. Tỉ số nào lớn hơn và lớn hơn bao nhiêu lần?

  • Bài 31 trang 108 SBT toán 9 tập 1

    Giải bài 31 trang 108 sách bài tập toán 9. Cạnh góc vuông kề với góc 60 của một tam giác vuông bằng 3. Sử dụng bằng lượng giác của các góc đặc biệt, hãy tìm cạnh huyền và cạnh góc vuông còn lại (làm tròn đến chữ số thập phân thứ tư).

  • Bài 32 trang 108 SBT toán 9 tập 1

    Giải bài 32 trang 108 sách bài tập toán 9. Đường cao BD của tam giác nhọn ABC bằng 6, đoạn thẳng AD = 5.

  • Bài 33 trang 108 SBT toán 9 tập 1

    Giải bài 33 trang 108 sách bài tập toán 9. Hãy tìm sin a, tg a, cotg a

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close