Giải bài 24 trang 41 sách bài tập toán 8 - Cánh diều

Cho biểu thức: \(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

Đề bài

Cho biểu thức: \(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

a)     Viết điều kiện xác định của biểu thức \(D\)

b)    Tính giá trị của biểu thức \(D\) tại \(x = 5947\)

c)     Tìm giá trị của \(x\) để \(D\) nhận giá trị nguyên.

Phương pháp giải - Xem chi tiết

Áp dụng hằng đẳng thức và phép cộng trừ nhân chia phân thức đại số để rút gọn rồi tính giá trị của biểu thức.

Lời giải chi tiết

a)     Điều kiện xác định của biểu thức \(D\) là: \(x \ne 0;x \ne  - 1;x \ne \frac{1}{2}\)

b)    Rút gọn biểu thức \(D\) ta có:

\(\begin{array}{l}D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \left( {\frac{{\left( {x + 2} \right)\left( {x + 1} \right) + 2.3x - 3.3x.\left( {x + 1} \right)}}{{3x\left( {x + 1} \right)}}} \right).\frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \left( {\frac{{{x^2} + 3x + 2 + 6x - 9{x^2} - 9x}}{{3x\left( {2 - 4x} \right)}}} \right) - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \frac{{ - 8{x^2} + 2}}{{3x\left( {2 - 4x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \frac{{ - 2\left( {2x - 1} \right)\left( {2x + 1} \right)}}{{6x\left( {1 - 2x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\\ = \frac{{2x + 1}}{{3x}} - \frac{{3x - {x^2} + 1}}{{3x}} = \frac{{{x^2} - x}}{{3x}} = \frac{{x - 1}}{3}\end{array}\)

Giá trị của biểu thức \(D\) tại \(x = 5947\) là: \(\frac{{5947 - 1}}{3} = 1982\)

c)     Để \(D\) nhận giá trị nguyên thì \(\frac{{x - 1}}{3}\) phải nhận giá trị nguyên. Suy ra \(x - 1 \vdots 3\), tức là \(x - 1 = 3k\) hay \(x = 3k + 1\) với \(k \in \mathbb{Z}\) (thỏa mãn điều kiện xác định).

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close