Giải bài 2.27 trang 46 SGK Toán 8 tập 1 - Kết nối tri thức

Phân tích các đa thức sau thành nhân tử:

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Phân tích các đa thức sau thành nhân tử:

a)      \({x^3} + {y^3} + x + y\)

b)      \({x^3} - {y^3} + x - y\)

c)      \({\left( {x - y} \right)^3} + {\left( {x + y} \right)^3}\)

d)      \({x^3} - 3{x^2}y + 3x{y^2} - {y^3} + {y^2} - {x^2}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử, sử dụng hằng đẳng thức

Lời giải chi tiết

a) \({x^3} + {y^3} + x + y\)

\(= \left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right) + \left( {x + y} \right) \\= \left( {x + y} \right)\left( {{x^2} - xy + {y^2} + 1} \right)\)

b) \({x^3} - {y^3} + x - y \)

\(= \left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right) + \left( {x - y} \right) \\= \left( {x - y} \right)\left( {{x^2} + xy + {y^2} + 1} \right)\)

c) \({\left( {x - y} \right)^3} + {\left( {x + y} \right)^3} \)

\(= \left( {x - y + x + y} \right)\left[ {{{\left( {x - y} \right)}^2} - \left( {x - y} \right)\left( {x + y} \right) + {{\left( {x + y} \right)}^2}} \right]\\ = 2x.\left( {{x^2} - 2xy + {y^2} - {x^2} + {y^2} + {x^2} + 2xy + {y^2}} \right) \\= 2x\left( {{x^2} + 3{y^2}} \right)\)

d) \({x^3} - 3{x^2}y + 3x{y^2} - {y^3} + {y^2} - {x^2} \)

\(= \left( {{x^3} - 3{x^2}y + 3x{y^2} - {y^3}} \right) + \left( {{y^2} - {x^2}} \right)\\ = {\left( {x - y} \right)^3} + \left( {y - x} \right)\left( {y + x} \right) \\= \left( {x - y} \right)\left[ {{{\left( {x - y} \right)}^2} - y - x} \right] \\= \left( {x - y} \right)\left( {{x^2} - 2xy + {y^2} - x - y} \right)\)

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close