Giải bài 2 trang 89 sách bài tập toán 9 - Chân trời sáng tạo tập 1Từ điểm P ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến tiếp xúc với (O) tại A và B. Đoạn thẳng OP cắt (O) tại Q (Hình 10). Cho biết PB = 8, PQ = 4. Tính R và số đo (widehat {AOB}). Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Đề bài Từ điểm P ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến tiếp xúc với (O) tại A và B. Đoạn thẳng OP cắt (O) tại Q (Hình 10). Cho biết PB = 8, PQ = 4. Tính R và số đo \(\widehat {AOB}\).
Phương pháp giải - Xem chi tiết Áp dụng định lí Pythagore vào tam giác OPB để tính R. Sử dụng tỉ số lượng giác, từ đó tính góc BOP. Khi đó ta tính được góc AOB. Lời giải chi tiết Trong \(\Delta OPB\) vuông tại B, ta có OP2 = OB2 + PB2, suy ra (R + 4)2 = R2 + 82, suy ra R = 6. OP2 = OB2 + PB2 suy ra (R + 4)2 = R2 + 82, suy ra R = 6. \(\sin \widehat {BOP} = \frac{{PB}}{{OP}} = \frac{8}{{6 + 4}} = \frac{4}{5}\) suy ra \(\widehat {BOP} \approx {53^o}\). Ta lại có \(\widehat {AOB} = 2\widehat {BOP} \approx {2.53^o} = {106^o}.\)
|