Giải bài 2 trang 82 sách bài tập toán 9 - Chân trời sáng tạo tập 2

Cho hình thang ABCD (AB // CD) nội tiếp đường tròn (O; R). Chứng minh ABCD là hình thang cân.

Đề bài

Cho hình thang ABCD (AB // CD) nội tiếp đường tròn (O; R). Chứng minh ABCD là hình thang cân.

Phương pháp giải - Xem chi tiết

Vẽ đường thẳng d vuông góc với AB tại M và CD tại N.

Chứng minh O cách đều các đỉnh của hình thang ABCD suy ra MN là trung trực của AB và CD.

Khi đó, chứng minh \(\widehat {AOM} = \widehat {BOM}\); \(\widehat {DON} = \widehat {CON}\) suy ra \(\widehat {AOD} = \widehat {BOC}\).

Chứng minh \(\Delta \)AOD = \(\Delta \)BOC suy ra AD = BC.

Lời giải chi tiết

Qua điểm O vẽ đường thẳng d vuông góc với AB tại M và CD tại N.

Ta có OA = OB = OC = OD = R, suy ra MN là đường trung trực của AB và CD.

Tam giác AOB cân tại O có OM là đường trung trực nên OM cũng là đường phân giác, suy ra \(\widehat {AOM} = \widehat {BOM}\).

Tương tự, \(\widehat {DON} = \widehat {CON}\).

Khi đó, ta có:

\(\widehat {AOM} + \widehat {AOD} + \widehat {DON} = \widehat {BOM} + \widehat {BOC} + \widehat {CON} = {180^o}\)

suy ra \(\widehat {AOD} = \widehat {BOC}\).

Xét \(\Delta \)AOD và \(\Delta \)BOC có:

OA = OB

\(\widehat {AOD} = \widehat {BOC}\)

OC = OD

Suy ra \(\Delta \)AOD = \(\Delta \)BOC (c.g.c). Dó đó AD = BC.

Vậy ABCD là hình thang cân.

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close