Giải bài 2 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo

Cho AB và CD là hai dây cung vuông góc tại E của đường tròn (O) .Vẽ hình chữ nhật AECF. Dùng phương pháp tọa độ mặt phẳng để chứng minh EF vuông góc với DB

Tổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Cho ABCD là hai dây cung vuông góc tại E của đường tròn (O) .Vẽ hình chữ nhật AECF. Dùng phương pháp tọa độ mặt phẳng để chứng minh EF vuông góc với DB

Phương pháp giải - Xem chi tiết

Bước 1: Xét với đường tròn bất kì, cho tọa độ các điểm A, B, C, D

Bước 2: Xác định tọa độ điểm E, F

Bước 3: Tính EF.DB, suy ra vuông góc

Lời giải chi tiết

Xét với đường tròn (O) có phương trình (O):(x3)2+(y4)2=25

Cho các điểm A(0;0),B(0;8),C(8;4),D(2;4) nằm trên đường tròn (O) và thỏa mãn AB vuông góc với CD

Phương trình đường thẳng đi qua hai điểm A, B có dạng x=0

Phương trình đường thẳng đi qua hai điểm C, D có dạng y=4

Ta có AB vuông góc với CD tại điểm E nên tọa độ điểm E là nghiệm của hệ sau:

{x=0y=4E(0;4)

Gọi tọa độ của điểm F là: F(x;y)

ACEF là hình chữ nhật nên AF=EC, mặt khác ta có: AF=(x;y),EC=(8;0)

Suy ra tọa độ điểm F là: F(8;0)

EF=(8;4),DB=(2;4)EF.BD=8.2+(4).4=0EFBD

Vậy ta chứng minh được EF vuông góc với DB

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close