Giải bài 2 trang 61 sách bài tập toán 12 - Chân trời sáng tạo

Cho hai mặt phẳng (left( P right):x + 2y + 2z - 10 = 0) và (left( Q right):x + 2y + 2z - 3 = 0). Khoảng cách giữa (left( P right)) và (left( Q right)) bằng A. (frac{8}{3}). B. (frac{7}{3}). C. 3. D. (frac{4}{3}).

Đề bài

Cho hai mặt phẳng \(\left( P \right):x + 2y + 2z - 10 = 0\) và \(\left( Q \right):x + 2y + 2z - 3 = 0\).

Khoảng cách giữa \(\left( P \right)\) và \(\left( Q \right)\) bằng

A. \(\frac{8}{3}\).

B. \(\frac{7}{3}\).

C. 3.

D. \(\frac{4}{3}\).

Phương pháp giải - Xem chi tiết

Để tính khoảng cách giữa hai mặt phẳng song song ta đưa về tính khoảng cách từ một điểm trên mặt phẳng này đến mặt phẳng còn lại.

Lời giải chi tiết

Lấy điểm \(A\left( {0;0;5} \right) \in \left( P \right)\). Khi đó ta có:

\(d\left( {\left( P \right);\left( Q \right)} \right) = d\left( {A;\left( Q \right)} \right) = \frac{{\left| {0 + 2.0 + 2.5 - 3} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }} = \frac{7}{3}\).

Chọn B.

  • Giải bài 3 trang 61 sách bài tập toán 12 - Chân trời sáng tạo

    Cho mặt phẳng (left( P right):x - 2y + z - 5 = 0). Điểm nào dưới đây thuộc (left( P right))? A. (Mleft( {1;1;6} right)). B. (Nleft( { - 5;0;0} right)). C. (Pleft( {0,0, - 5} right)). D. (Qleft( {2; - 1;5} right)).

  • Giải bài 4 trang 61 sách bài tập toán 12 - Chân trời sáng tạo

    Cho ba mặt phẳng \(\left( \alpha \right):3x + 3y + 6z + 13 = 0,\left( \beta \right):2x + 2y - 2z + 9 = 0\) và \(\left( \gamma \right):x - y - 21 = 0\). Trong các mệnh đề sau, mệnh đề nào sai? A. \(\left( \alpha \right) \bot \left( \beta \right)\). B. \(\left( \gamma \right) \bot \left( \beta \right)\). C. \(\left( \alpha \right)\parallel \left( \beta \right)\). D. \(\left( \alpha \right) \bot \left( \gamma \right)\).

  • Giải bài 5 trang 61 sách bài tập toán 12 - Chân trời sáng tạo

    Cho đường thẳng (d) có phương trình tham số: (left{ begin{array}{l}x = 1 + 4t\y = 6t\z = - 2 + 2tend{array} right.). Phương trình nào dưới đây là phương trình chính tắc của đường thẳng (d)? A. (frac{{x + 1}}{4} = frac{y}{6} = frac{{z - 2}}{2}). B. (frac{{x - 5}}{2} = frac{{y - 6}}{3} = frac{z}{1}). C. (frac{{x + 1}}{2} = frac{y}{3} = frac{{z - 2}}{{ - 2}}). D. (frac{{x - 1}}{4} = frac{y}{6} = frac{{z + 2}}{2}).

  • Giải bài 6 trang 62 sách bài tập toán 12 - Chân trời sáng tạo

    Cho đường thẳng (d:frac{{x - 1}}{2} = frac{{3 - y}}{{ - 1}} = z + 1). Trong các phương trình sau, phương trình nào là phương trình tham số của (d)? A. (left{ begin{array}{l}x = 1 + 2t\y = 3 - t\z = - 1end{array} right.). B. (left{ begin{array}{l}x = 1 + 2t\y = - 3 + t\z = - 1 + tend{array} right.). C. (left{ begin{array}{l}x = 1 + 2t\y = 3 + t\z = - 1 + tend{array} right.). D. (left{ begin{array}{l}x = - 1 + 2t\y = 2 + t\z = - 2 + tend{array} ri

  • Giải bài 7 trang 62 sách bài tập toán 12 - Chân trời sáng tạo

    Đường thẳng đi qua điểm (Ileft( {1; - 1; - 1} right)) và nhận (overrightarrow u = left( { - 2;3; - 5} right)) làm vectơ chỉ phương có phương trình chính tắc là A. (frac{{x + 1}}{{ - 2}} = frac{{y - 1}}{3} = frac{{z - 1}}{{ - 5}}). B. (frac{{x - 1}}{{ - 2}} = frac{{y + 1}}{3} = frac{{z + 1}}{{ - 5}}). C. (frac{{x - 2}}{1} = frac{{y + 3}}{{ - 1}} = frac{{z - 5}}{{ - 1}}). D. (frac{{x + 2}}{1} = frac{{y - 3}}{{ - 1}} = frac{{z + 5}}{{ - 1}}).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close