Giải Bài 2 trang 18 sách bài tập toán 7 tập 1 - Chân trời sáng tạoTính Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Khoa học tự nhiên... Đề bài Tính a)\(\left( { - 0,5} \right) - \left( { - 1 + \dfrac{2}{3}} \right):1,5 + \left( {\dfrac{{ - 1}}{4}} \right)\) b)\(\left[ {\left( {\dfrac{{ - 7}}{8}} \right):\dfrac{{21}}{{16}}} \right] - \dfrac{5}{3}.\left( {\dfrac{1}{3} - \dfrac{7}{{10}}} \right)\) c)\({\left[ {\left( {\dfrac{{ - 2}}{3}} \right) + \dfrac{3}{4}} \right]^2}.\dfrac{{12}}{5} - \dfrac{1}{5}\) d)\({\left( {\dfrac{1}{{25}} - 0,4} \right)^2}:\dfrac{9}{{125}} - \left[ {\left( {1\dfrac{1}{3} - \dfrac{2}{5}} \right).\dfrac{3}{7}} \right]\) e)\(\left\{ {3\dfrac{{17}}{{18}}.\left[ {\dfrac{5}{2} - \left( {\dfrac{1}{3} + \dfrac{2}{9}} \right)} \right]} \right\}:{\left[ {\left( {\dfrac{{ - 1}}{2}} \right) + 0,25} \right]^2}\) Phương pháp giải - Xem chi tiết Áp dụng quy tắc bỏ ngoặc rồi tính toán, nếu có lũy thừa hay số thập phân thì ta viết chúng dưới dạng phân số để thuận lợi trong tính toán Lời giải chi tiết a)\(\left( { - 0,5} \right) - \left( { - 1 + \dfrac{2}{3}} \right):1,5 + \left( {\dfrac{{ - 1}}{4}} \right)\) \(\begin{array}{l} = \left( {\dfrac{{ - 1}}{2}} \right) - \left( {\dfrac{{ - 3}}{3} + \dfrac{2}{3}} \right):\dfrac{3}{2} + \left( {\dfrac{{ - 1}}{4}} \right)\\ = \left( {\dfrac{{ - 1}}{2}} \right) - \left( {\dfrac{{ - 1}}{3}} \right).\dfrac{2}{3} + \left( {\dfrac{{ - 1}}{4}} \right)\\ = \left( {\dfrac{{ - 1}}{2}} \right) + \dfrac{2}{9} + \left( {\dfrac{{ - 1}}{4}} \right)\\ = \left( {\dfrac{{ - 18}}{{36}}} \right) + \dfrac{8}{{36}} + \left( {\dfrac{{ - 9}}{{36}}} \right) = \dfrac{{ - 19}}{{36}}\end{array}\) b)\(\left[ {\left( {\dfrac{{ - 7}}{8}} \right):\dfrac{{21}}{{16}}} \right] - \dfrac{5}{3}.\left( {\dfrac{1}{3} - \dfrac{7}{{10}}} \right)\) \(\begin{array}{l} = \left[ {\left( {\dfrac{{ - 7}}{8}} \right).\dfrac{{16}}{{21}}} \right] - \dfrac{5}{3}.\left( {\dfrac{{10}}{{30}} - \dfrac{{21}}{{30}}} \right)\\ = \dfrac{{\left( { - 7} \right).16}}{{8.21}} - \dfrac{5}{3}.\left( {\dfrac{{ - 11}}{{30}}} \right)\end{array}\) \(\begin{array}{l} = - \dfrac{{7.8.2}}{{8.7.3}} + \dfrac{{5.11}}{{3.5.6}}\\ = \dfrac{{ - 2}}{3} + \dfrac{{11}}{{18}} = \dfrac{{ - 1}}{{18}}\end{array}\) c)\({\left[ {\left( {\dfrac{{ - 2}}{3}} \right) + \dfrac{3}{4}} \right]^2}.\dfrac{{12}}{5} - \dfrac{1}{5}\) \( = {\left[ {\left( {\dfrac{{ - 8}}{{12}}} \right) + \dfrac{9}{{12}}} \right]^2}.\dfrac{{12}}{5} - \dfrac{1}{5} = {\left( {\dfrac{1}{{12}}} \right)^2}.\dfrac{{12}}{5} - \dfrac{1}{5}\\ = \dfrac{1}{{{{12}^2}}}.\dfrac{{12}}{5} - \dfrac{1}{5} = \dfrac{1}{{60}} - \dfrac{1}{5}= \dfrac{1}{{60}} - \dfrac{12}{60} = \dfrac{{ - 11}}{{60}}\) d)\({\left( {\dfrac{1}{{25}} - 0,4} \right)^2}:\dfrac{9}{{125}} - \left[ {\left( {1\dfrac{1}{3} - \dfrac{2}{5}} \right).\dfrac{3}{7}} \right]\) \(\begin{array}{l} = {\left( {\dfrac{1}{{25}} - \dfrac{2}{5}} \right)^2}.\dfrac{{125}}{9} - \left[ {\left( {\dfrac{4}{3} - \dfrac{2}{5}} \right).\dfrac{3}{7}} \right]\\ = {\left( {\dfrac{{ - 9}}{{25}}} \right)^2}.\dfrac{{125}}{9} - \left( {\dfrac{{14}}{{15}}.\dfrac{3}{7}} \right)\\ = \dfrac{{{9^2}}}{{{{25}^2}}}.\dfrac{{125}}{9} - \dfrac{2}{5}\\ = \dfrac{{{{\left( {{3^2}} \right)}^2}}}{{{{\left( {{5^2}} \right)}^2}}}.\dfrac{{{5^3}}}{{{3^2}}} - \dfrac{2}{5} = \dfrac{{{3^2}}}{5} - \dfrac{2}{5} = \dfrac{9}{5} - \dfrac{2}{5} = \dfrac{7}{5}\end{array}\) e)\(\left\{ {3\dfrac{{17}}{{18}}.\left[ {\dfrac{5}{2} - \left( {\dfrac{1}{3} + \dfrac{2}{9}} \right)} \right]} \right\}:{\left[ {\left( {\dfrac{{ - 1}}{2}} \right) + 0,25} \right]^2}\) \(\begin{array}{l} = \left\{ {\dfrac{{71}}{{18}}.\left[ {\dfrac{5}{2} - \dfrac{5}{9}} \right]} \right\}:{\left[ {\left( {\dfrac{{ - 1}}{2}} \right) + \dfrac{1}{4}} \right]^2}\\ = \left( {\dfrac{{71}}{{18}}.\dfrac{{35}}{{18}}} \right):{\left( {\dfrac{1}{4}} \right)^2} = \dfrac{{2485}}{{324}}:\dfrac{1}{{16}} \\= \dfrac{{2485}}{{324}}.16 = \dfrac{{9940}}{{81}}\end{array}\)
|