Bài 19 trang 9 SBT toán 9 tập 2Giải bài 19 trang 9 sách bài tập toán 9. Tìm giá trị của a và b để hai đường thẳng (d_1):(3a-1)x + 2by = 56 và (d_2): ax/2 - (3b + 2)y = 3 cắt nhau tại điểm M(2; -5). Đề bài Tìm giá trị của \(a\) và \(b\) để hai đường thẳng \(({d_1})\): \(\left( {3a - 1} \right)x + 2by = 56\) và \(({d_2})\): \(\displaystyle {1 \over 2} ax - \left( {3b + 2} \right)y = 3\) cắt nhau tại điểm \(M(2; -5).\) Phương pháp giải - Xem chi tiết Sử dụng: - Hai đường thẳng \(({d_1})\): \(ax + by = c\) và \(({d_2})\): \(a'x+b'y = c'\) cắt nhau tại điểm \(M\) thì tọa độ của \(M\) là nghiệm của hệ phương trình: \(\left\{ {\matrix{ - Cặp số \(({x_0};{y_0})\) là nghiệm của hệ phương trình \(\left\{ {\matrix{ \( \Leftrightarrow \left\{ {\matrix{ - Cách giải hệ phương trình bằng phương pháp thế (coi \(a,b\) là ẩn) + Bước \(1\): Rút \(a\) hoặc \(b\) từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn. + Bước \(2\): Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho. Lời giải chi tiết Hai đường thẳng \(({d_1})\): \(\left( {3a - 1} \right)x + 2by = 56\) và \(({d_2})\): \(\displaystyle {1 \over 2}ax - \left( {3b + 2} \right)y = 3\) cắt nhau tại điểm \(M(2; -5)\) nên tọa độ của \(M\) là nghiệm của hệ phương trình: \(\left\{ {\matrix{ Thay \(x = 2\) và \(y = -5\) vào hệ phương trình ta có: \(\eqalign{ Vậy \(a = 8; b = -1.\) HocTot.Nam.Name.Vn
|