Giải bài 19 trang 14 sách bài tập toán 8 - Cánh diều

Không tính giá trị của biểu thức, hãy so sánh:

Đề bài

Không tính giá trị của biểu thức, hãy so sánh:

a) \(M = 2021.2023\) và \(N = {2022^2}\)

b) \(P = 3\left( {{2^2} + 1} \right)\left( {{2^4} + 1} \right)\left( {{2^8} + 1} \right) + 2\) và \(Q = {\left( {{2^2}} \right)^8}\)

Phương pháp giải - Xem chi tiết

Áp dụng các hằng đẳng thức đáng nhớ để so sánh.

Lời giải chi tiết

a) Ta có:

\(2021.2023 = \left( {2022 - 1} \right)\left( {2022 + 1} \right) = {2022^2} - {1^2} < {2022^2}\)

Vậy \(M < N\)

b) Ta có:

\(\begin{array}{l}3\left( {{2^2} + 1} \right)\left( {{2^4} + 1} \right)\left( {{2^8} + 1} \right) + 2\\ = \left( {{2^2} - 1} \right)\left( {{2^2} + 1} \right)\left( {{2^4} + 1} \right)\left( {{2^8} + 1} \right) + 2\\ = \left( {{2^4} - 1} \right)\left( {{2^4} + 1} \right)\left( {{2^8} + 1} \right) + 2\\ = \left( {{2^8} - 1} \right)\left( {{2^8} + 1} \right) + 2 = {2^{16}} - 1 + 2 = {2^{16}} + 1\\{\left( {{2^2}} \right)^8} = {2^{2.8}} = {2^{16}} < {2^{16}} + 1\end{array}\)

Vậy \(P > Q\)

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close