Giải bài 17 trang 85 sách bài tập toán 9 - Cánh diều tập 1

Bạn Đức đứng trên nóc ngôi nhà ở độ cao 8 m. Vị trí mắt bạn Đức (tại vị trí A) cách nóc nhà 1,5 m. Bạn nhìn thấy vị trí B cao nhất của một toà nhà với góc tạo bởi tia AB và tia AH theo phương nằm ngang là \(\widehat {BAH} = 60^\circ \). Bạn Đức cũng nhìn thấy vị trí K tại chân tòa nhà đó với góc tạo bởi tia AK và tia AH là \(\widehat {HAK} = 15^\circ \), AH vuông góc với BK tại H (Hình 16). Tính chiều cao BK của tòa nhà (làm tròn kết quả đến hàng phần mười của mét).

Đề bài

Bạn Đức đứng trên nóc ngôi nhà ở độ cao 8 m. Vị trí mắt bạn Đức (tại vị trí A) cách nóc nhà 1,5 m. Bạn nhìn thấy vị trí B cao nhất của một toà nhà với góc tạo bởi tia AB và tia AH theo phương nằm ngang là \(\widehat {BAH} = 60^\circ \). Bạn Đức cũng nhìn thấy vị trí K tại chân tòa nhà đó với góc tạo bởi tia AK và tia AH là \(\widehat {HAK} = 15^\circ \), AH vuông góc với BK tại H (Hình 16). Tính chiều cao BK của tòa nhà (làm tròn kết quả đến hàng phần mười của mét).

Phương pháp giải - Xem chi tiết

Bước 1: Tính HK.

Bước 2: Tính AH dựa vào hệ thức lượng trong tam giác vuông AHK.

Bước 3: Tính BH dựa vào hệ thức lượng trong tam giác vuông AHB.

Bước 4: Chiều cao của tòa nhà là BK = HK + BH.

Lời giải chi tiết

Xét CAHK có \(\widehat {ACK} = \widehat {CKH} = \widehat {KHA} = 90^\circ \) nên CAHK là hình chữ nhật.

Suy ra \(HK = CA = 8 + 1,5 = 9,5\)m.

Xét tam giác vuông AHK có \(\tan \widehat {HAK} = \frac{{HK}}{{AH}}\) do đó \(AH = \frac{{HK}}{{\tan \widehat {HAK}}} = \frac{{9,5}}{{\tan 15^\circ }}\).

Xét tam giác vuông AHB có \(\tan \widehat {HAB} = \frac{{HB}}{{AH}}\) do đó \(BH = \tan \widehat {HAB}.AH = \tan 60^\circ .\frac{{9,5}}{{\tan 15^\circ }}.\)

Chiều cao của tòa nhà là:

\(BK = HK + BH = 9,5 + \tan 60^\circ .\frac{{9,5}}{{\tan 15^\circ }} \approx 70,9m.\)

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close